dark matter model
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 70)

H-INDEX

34
(FIVE YEARS 8)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sanjay Bloor ◽  
Tomás E. Gonzalo ◽  
Pat Scott ◽  
Christopher Chang ◽  
Are Raklev ◽  
...  

AbstractWe introduce the Universal Model Machine (), a tool for automatically generating code for the global fitting software framework , based on Lagrangian-level inputs. accepts models written symbolically in and formats, and can use either tool along with and to generate model, collider, dark matter, decay and spectrum code, as well as interfaces to corresponding versions of , , and (C "Image missing"). In this paper we describe the features, methods, usage, pathways, assumptions and current limitations of . We also give a fully worked example, consisting of the addition of a Majorana fermion simplified dark matter model with a scalar mediator to via , and carry out a corresponding fit.


2021 ◽  
Vol 923 (1) ◽  
pp. 95
Author(s):  
Man Ho Chan

Abstract Galaxy clusters are good targets for examining our understanding of cosmology. Apart from numerical simulations and gravitational lensing, X-ray observation is the most common and conventional way to analyze the gravitational structures of galaxy clusters. Therefore, it is valuable to have simple analytical relations that can connect the observed distribution of the hot, X-ray-emitting gas to the structure of the dark matter in the clusters as derived from simulations. In this article, we apply a simple framework that can analytically connect the hot gas empirical parameters with the standard parameters in the cosmological cold dark matter model. We have theoretically derived two important analytic relations, r s ≈ 3 r c and ρ s ≈ 9 β kT / 8 π Gm g r c 2 , which can easily relate the dark matter properties in galaxy clusters with the hot gas properties. This can give a consistent picture describing gravitational astrophysics for galaxy clusters by the hot gas and cold dark matter models.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ye Xu

Abstract It is assumed that heavy dark matter particles (HDMs) with a mass of O(TeV) are captured by the Sun. HDMs can decay to relativistic light dark matter particles (LDMs), which could be measured by km3 neutrino telescopes (like the IceCube detector). The numbers and fluxes of expected LDMs and neutrinos were evaluated at IceCube with the Z′ portal dark matter model. Based on the assumption that no events are observed at IceCube in 6 years, the corresponding upper limits on LDM fluxes were calculated at 90% C. L.. These results indicated that LDMs could be directly detected in the O(1TeV)-O(10TeV) energy range at IceCube with 100 GeV ≲ mZ′ ≲ 350 GeV and τϕ ≲ 5 × 1022ṡ.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 384
Author(s):  
Ariel Zhitnitsky

The Horizon-10T collaboration have reported observation of Multi-Modal Events (MME) containing multiple peaks suggesting their clustering origin. These events are proven to be hard to explain in terms of conventional cosmic rays (CR). We propose that these MMEs might be result of the dark matter annihilation events within the so-called axion quark nugget (AQN) dark matter model, which was originally invented for completely different purpose to explain the observed similarity between the dark and the visible components in the Universe, i.e., ΩDM∼Ωvisible without any fitting parameters. We support this proposal by demonstrating that the observations, including the frequency of appearance, intensity, the spatial distribution, the time duration, the clustering features, and many other properties nicely match the emission characteristics of the AQN annihilation events in atmosphere. We list a number of features of the AQN events which are very distinct from conventional CR air showers. The observation (non-observation) of these features may substantiate (refute) our proposal.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Nabil Baouche ◽  
Amine Ahriche ◽  
Gaber Faisel ◽  
Salah Nasri

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Bastián Díaz Sáez ◽  
Patricio Escalona ◽  
Sebastián Norero ◽  
Alfonso Zerwekh

Abstract We explore a simple extension to the Standard Model containing two gauge singlets: a Dirac fermion and a real pseudoscalar. In some regions of the parameter space both singlets are stable without the necessity of additional symmetries, then becoming a possible two-component dark matter model. We study the relic abundance production via freeze-out, with the latter determined by annihilations, conversions and semi-annihilations. Experimental constraints from invisible Higgs decay, dark matter relic abundance and direct/indirect detection are studied. We found three viable regions of the parameter space, and the model is sensitive to indirect searches.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 359
Author(s):  
Alexandre M. Gavrilik ◽  
Andriy V. Nazarenko

In this paper, we further elaborate on the Bose–Einstein condensate (BEC) dark matter model extended in our previous work [Phys. Rev. D 2020, 102, 083510] by the inclusion of sixth-order (or three-particle) repulsive self-interaction term. Herein, our goal is to complete the picture through adding to the model the fourth-order repulsive self-interaction. The results of our analysis confirm the following: while in the previous work the two-phase structure and the possibility of first-order phase transition was established, here we demonstrate that with the two self-interactions involved, the nontrivial phase structure of the enriched model remains intact. For this to hold, we study the conditions which the parameters of the model, including the interaction parameters, should satisfy. As a by-product and in order to provide some illustration, we obtain the rotation curves and the (bipartite) entanglement entropy for the case of a particular dwarf galaxy.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Mark D. Goodsell ◽  
Rhea Moutafis

AbstractWe describe the automation of the calculation of perturbative unitarity constraints including scalars that have colour charges, and its release in . We apply this, along with vacuum stability constraints, to a simple dark matter model with colourful mediators and interesting decays, and show how it leads to a bound on a thermal relic dark matter mass well below the classic Griest-Kamionkowski limit.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Yoshihiko Abe ◽  
Takashi Toma ◽  
Koji Tsumura ◽  
Naoki Yamatsu

Sign in / Sign up

Export Citation Format

Share Document