scholarly journals Bulk entropy is crucial to validate the second law of the extended black hole thermodynamics

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
De-Chang Dai ◽  
Djordje Minic ◽  
Dejan Stojkovic

Abstract The extended black hole thermodynamics in which the cosmological constant plays the role of pressure significantly enriches the phase structure of the theory. In order to understand the extended black hole thermodynamics more precisely, we let the value of the cosmological constant vary dynamically via tunneling from one vacuum to another in a black hole induced vacuum decay. In this process, entropy of the matter/energy released by a black hole is crucial to validate the second law of thermodynamics. In other words, without taking this bulk entropy into account, entropy associated with the black hole and cosmological horizons may not always increase. Since the bulk entropy is not represented by the black hole and the cosmological horizons, this result calls for a more careful interpretation of the holographic principle in which environmental effects are taken into account.

1990 ◽  
Vol 45 (7) ◽  
pp. 879-882
Author(s):  
B. H. Lavenda

AbstractAccording to the second law of thermodynamics, thermal interactions of material bodies lead to an increase in entropy. Black-hole thermodynamics has unknowingly repudiated this law of Nature.


Author(s):  
Alberto Gianinetti

As a probabilistic law, the second law of thermodynamics needs to be conceptualized in terms of the probabilities of events occurring at the microscopic level. This determines the probability of occurrence for macroscopic phenomena. For the best comprehension of this approach, it is necessary to distinguish between “probabilities”, which are subjective predictions of an expected outcome, and “frequencies”, which are objective observations of that outcome. This distinction is of help to unravel some ambiguities in the interpretation of the second law of thermodynamics.


Author(s):  
John W. Moffat

A major question confronting physicists studying black holes was whether thermodynamics applied to them—that is, whether the black holes radiated heat and lost energy. Bekenstein considered heat and thermodynamics important for the interior of black holes. Based on the second law of thermodynamics, Hawking proposed that black holes evaporate over a very long time through what we now call Hawking radiation. This concept contradicts the notion that nothing can escape a black hole event horizon. Quantum physics enters into Hawking’s calculations, and he discovered the conundrum that the radiation would violate quantum mechanics, leading to what is called the information loss problem. These ideas are still controversial, and many physicists have attempted to resolve them, including Russian theorists Zel’dovich and Starobinsky. Alternative quantum physics interpretations of black holes have been proposed that address the thermodynamics problems, including so-called gravastars.


Sign in / Sign up

Export Citation Format

Share Document