Geometric Algebra of Singular Ruled Surfaces

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Yanlin Li ◽  
Zhigang Wang ◽  
Tiehong Zhao
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1259
Author(s):  
Francisco G. Montoya ◽  
Raúl Baños ◽  
Alfredo Alcayde ◽  
Francisco Manuel Arrabal-Campos ◽  
Javier Roldán Roldán Pérez

This paper presents a new framework based on geometric algebra (GA) to solve and analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The proposed approach is an exploratory application of the geometric algebra power theory (GAPoT) to multiple-phase systems. A definition of geometric apparent power for three-phase systems, that complies with the energy conservation principle, is also introduced. Power calculations are performed in a multi-dimensional Euclidean space where cross effects between voltage and current harmonics are taken into consideration. By using the proposed framework, the current can be easily geometrically decomposed into active- and non-active components for current compensation purposes. The paper includes detailed examples in which electrical circuits are solved and the results are analysed. This work is a first step towards a more advanced polyphase proposal that can be applied to systems under real operation conditions, where unbalance and asymmetry is considered.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 62610-62618 ◽  
Author(s):  
Zhang Youzheng ◽  
Mui Yanping

2017 ◽  
Vol 27 (3) ◽  
pp. 2115-2132 ◽  
Author(s):  
D. Hildenbrand ◽  
S. Franchini ◽  
A. Gentile ◽  
G. Vassallo ◽  
S. Vitabile
Keyword(s):  

1934 ◽  
Vol 30 (2) ◽  
pp. 170-177 ◽  
Author(s):  
J. Bronowski

The surfaces whose prime-sections are hyperelliptic curves of genus p have been classified by G. Castelnuovo. If p > 1, they are the surfaces which contain a (rational) pencil of conics, which traces the on the prime-sections. Thus, if we exclude ruled surfaces, they are rational surfaces. The supernormal surfaces are of order 4p + 4 and lie in space [3p + 5]. The minimum directrix curve to the pencil of conics—that is, the curve of minimum order which meets each conic in one point—may be of any order k, where 0 ≤ k ≤ p + 1. The prime-sections of these surfaces are conveniently represented on the normal rational ruled surfaces, either by quadric sections, or by quadric sections residual to a generator, according as k is even or odd.


2016 ◽  
Vol 223 (1) ◽  
pp. 1-20 ◽  
Author(s):  
ADRIEN DUBOULOZ ◽  
TAKASHI KISHIMOTO

We show that the generic fiber of a family $f:X\rightarrow S$ of smooth $\mathbb{A}^{1}$-ruled affine surfaces always carries an $\mathbb{A}^{1}$-fibration, possibly after a finite extension of the base $S$. In the particular case where the general fibers of the family are irrational surfaces, we establish that up to shrinking $S$, such a family actually factors through an $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ over a certain $S$-scheme $Y\rightarrow S$ induced by the MRC-fibration of a relative smooth projective model of $X$ over $S$. For affine threefolds $X$ equipped with a fibration $f:X\rightarrow B$ by irrational $\mathbb{A}^{1}$-ruled surfaces over a smooth curve $B$, the induced $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ can also be recovered from a relative minimal model program applied to a smooth projective model of $X$ over $B$.


2012 ◽  
Vol 43 (3) ◽  
pp. 443-451 ◽  
Author(s):  
Nivaldo G. Grulha ◽  
Marcelo E. Hernandes ◽  
Rodrigo Martins

1969 ◽  
Vol 21 (2) ◽  
pp. 291-311 ◽  
Author(s):  
Tatsuo SUWA
Keyword(s):  

2014 ◽  
Vol 24 (2) ◽  
pp. 493-514 ◽  
Author(s):  
Julio Zamora-Esquivel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document