Atomic Decomposition and Composition Operators on Variable Exponent Bergman Spaces

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zi-cong Yang ◽  
Ze-hua Zhou
Author(s):  
Bin Liu ◽  
Jouni Rättyä ◽  
Fanglei Wu

AbstractBounded and compact differences of two composition operators acting from the weighted Bergman space $$A^p_\omega $$ A ω p to the Lebesgue space $$L^q_\nu $$ L ν q , where $$0<q<p<\infty $$ 0 < q < p < ∞ and $$\omega $$ ω belongs to the class "Equation missing" of radial weights satisfying two-sided doubling conditions, are characterized. On the way to the proofs a new description of q-Carleson measures for $$A^p_\omega $$ A ω p , with $$p>q$$ p > q and "Equation missing", involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of q-Carleson measures for the classical weighted Bergman space $$A^p_\alpha $$ A α p with $$-1<\alpha <\infty $$ - 1 < α < ∞ to the setting of doubling weights. The case "Equation missing" is also briefly discussed and an open problem concerning this case is posed.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


2008 ◽  
Vol 57 (5) ◽  
pp. 2153-2202 ◽  
Author(s):  
Evgeny A. Poletsky ◽  
Michael I. Stessin

Sign in / Sign up

Export Citation Format

Share Document