Finite-dimensional ℓ-simple lattice-ordered algebras with a d-basis

2011 ◽  
Vol 65 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Jingjing Ma
1977 ◽  
Vol 42 (4) ◽  
pp. 481-491 ◽  
Author(s):  
Iraj Kalantari ◽  
Allen Retzlaff

The area of interest of this paper is recursively enumerable vector spaces; its origins lie in the works of Rabin [16], Dekker [4], [5], Crossley and Nerode [3], and Metakides and Nerode [14]. We concern ourselves here with questions about maximal vector spaces, a notion introduced by Metakides and Nerode in [14]. The domain of discourse is V∞ a fully effective, countably infinite dimensional vector space over a recursive infinite field F.By fully effective we mean that V∞, under a fixed Gödel numbering, has the following properties:(i) The operations of vector addition and scalar multiplication on V∞ are represented by recursive functions.(ii) There is a uniform effective procedure which, given n vectors, determines whether or not they are linearly dependent (the procedure is called a dependence algorithm).We denote the Gödel number of x by ⌈x⌉ By taking {εn ∣ n > 0} to be a fixed recursive basis for V∞, we may effectively represent elements of V∞ in terms of this basis. Each element of V∞ may be identified uniquely by a finitely-nonzero sequence from F Under this identification, εn corresponds to the sequence whose n th entry is 1 and all other entries are 0. A recursively enumerable (r.e.) space is a subspace of V∞ which is an r.e. set of integers, ℒ(V∞) denotes the lattice of all r.e. spaces under the operations of intersection and weak sum. For V, W ∈ ℒ(V∞), let V mod W denote the quotient space. Metakides and Nerode define an r.e. space M to be maximal if V∞ mod M is infinite dimensional and for all V ∈ ℒ(V∞), if V ⊇ M then either V mod M or V∞ mod V is finite dimensional. That is, M has a very simple lattice of r.e. superspaces.


1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Sign in / Sign up

Export Citation Format

Share Document