vector addition
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 68 (5) ◽  
pp. 1-43
Author(s):  
Michael Blondin ◽  
Matthias Englert ◽  
Alain Finkel ◽  
Stefan GÖller ◽  
Christoph Haase ◽  
...  

We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.


2021 ◽  
Author(s):  
Anahita Khodadadi ◽  

This book aims to narrate fundamental concepts of structural design to architecture students such that they have minimum involvement with math problem-solving. Within this book, students learn about different types of loads, forces and vector addition, the concept of equilibrium, internal forces, geometrical and material properties of structural elements, and rules of thumb for estimating the proportion of some structural systems such as catenary cables and arches, trusses, and frame structures.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Michael Blondin ◽  
Mikhail Raskin

Vector addition systems with states (VASS) are widely used for the formal verification of concurrent systems. Given their tremendous computational complexity, practical approaches have relied on techniques such as reachability relaxations, e.g., allowing for negative intermediate counter values. It is natural to question their feasibility for VASS enriched with primitives that typically translate into undecidability. Spurred by this concern, we pinpoint the complexity of integer relaxations with respect to arbitrary classes of affine operations. More specifically, we provide a trichotomy on the complexity of integer reachability in VASS extended with affine operations (affine VASS). Namely, we show that it is NP-complete for VASS with resets, PSPACE-complete for VASS with (pseudo-)transfers and VASS with (pseudo-)copies, and undecidable for any other class. We further present a dichotomy for standard reachability in affine VASS: it is decidable for VASS with permutations, and undecidable for any other class. This yields a complete and unified complexity landscape of reachability in affine VASS. We also consider the reachability problem parameterized by a fixed affine VASS, rather than a class, and we show that the complexity landscape is arbitrary in this setting.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Michael Blondin ◽  
Christoph Haase ◽  
Filip Mazowiecki ◽  
Mikhail Raskin

We study the reachability problem for affine $\mathbb{Z}$-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine $\mathbb{Z}$-VASS with the finite-monoid property (afmp-$\mathbb{Z}$-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-$\mathbb{Z}$-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-$\mathbb{Z}$-VASS reduces to reachability in a $\mathbb{Z}$-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-$\mathbb{Z}$-VASS are semilinear, and in particular enables us to show that reachability in $\mathbb{Z}$-VASS with transfers and $\mathbb{Z}$-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine $\mathbb{Z}$-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine $\mathbb{Z}$-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine $\mathbb{Z}$-VASS with monogenic matrix monoid and undecidable reachability relation.


2021 ◽  
pp. 68-79
Author(s):  
Geoffrey Brooker

“Four-vectors in relativity” gives a “soft” introduction to four-vectors by first setting up corresponding properties of three-vectors. These include the triangle rule for vector addition, and rotation of axes by a matrix multiplication. The physics of a three-dimensional system is unchanged by a rotation of the axes within which it is observed. Likewise the physics of a relativistic system is unchanged (“invariant”) under application of a Lorentz transformation.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 373
Author(s):  
Khaled Abuhmaidan ◽  
Monther Aldwairi ◽  
Benedek Nagy

Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: it is not closed under vector-addition, which gives a challenge. The points of the triangular grid are represented by zero-sum and one-sum coordinate-triplets keeping the symmetry of the grid and reflecting the orientations of the triangles. This system is expanded to the plane using restrictions like, at least one of the coordinates is an integer and the sum of the three coordinates is in the interval [−1,1]. However, the vector arithmetic is still not straightforward; by purely adding two such vectors the result may not fulfill the above conditions. On the other hand, for various applications of digital grids, e.g., in image processing, cartography and physical simulations, one needs to do vector arithmetic. In this paper, we provide formulae that give the sum, difference and scalar product of vectors of the continuous coordinate system. Our work is essential for applications, e.g., to compute discrete rotations or interpolations of images on the triangular grid.


Author(s):  
YURIY ALYUSHIN

The technique of superposition of motions in the space of Lagrange variables is described, which allows us to obtain the equations of combined motion by replacing the Lagrange variables of superimposed (external) motion with Euler variables of nested (internal) motion. The components of velocity and acceleration in the combined motion obtained as a result of differentiating the equations of motion in time coincide with the results of vector addition of the velocities and accelerations of the particles involved in the superimposed motions at each moment of time. Examples of motion and superposition descriptions for absolutely solid and deformable bodies with equations for the main kinematic characteristics of motion, including for robot manipulators with three independent drives, pressing with torsion, bending with tension, and cross– helical rolling, are given. For example, given the fragment of calculation of forces in the kinematic pairs shown the advantages of the description of motion in Lagrangian form for the dynamic analysis of lever mechanisms, allows to determine the required external exposure when performing the energy conservation law at any time in any part of the mechanism.


Sign in / Sign up

Export Citation Format

Share Document