scholarly journals On nilpotency of higher commutator subgroups of a finite soluble group

Author(s):  
Josean da Silva Alves ◽  
Pavel Shumyatsky
1970 ◽  
Vol 22 (1) ◽  
pp. 36-40 ◽  
Author(s):  
J. W. Wamsley

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.The groups presented are defined as:with α|γ| ≠ 1, β|γ| ≠ 1, γ ≠ 0.We prove the following result.THEOREM 1. Each of the groups presented is a finite soluble group.We state the following theorem proved by Macdonald (1).THEOREM 2. G1(α, β, 1) is a finite nilpotent group.1. In this section we make some elementary remarks.


1975 ◽  
Vol 27 (4) ◽  
pp. 837-851 ◽  
Author(s):  
M. J. Tomkinson

W. Gaschutz [5] introduced a conjugacy class of subgroups of a finite soluble group called the prefrattini subgroups. These subgroups have the property that they avoid the complemented chief factors of G and cover the rest. Subsequently, these results were generalized by Hawkes [12], Makan [14; 15] and Chambers [2]. Hawkes [12] and Makan [14] obtained conjugacy classes of subgroups which avoid certain complemented chief factors associated with a saturated formation or a Fischer class. Makan [15] and Chambers [2] showed that if W, D and V are the prefrattini subgroup, 𝔍-normalizer and a strongly pronormal subgroup associated with a Sylow basis S, then any two of W, D and V permute and the products and intersections of these subgroups have an explicit cover-avoidance property.


Author(s):  
R. J. Cook ◽  
James Wiecold ◽  
A. G. Wellamson

AbstractIt is proved that a finite soluble group of order n has at most (n − 1)/(q − 1) maximal subgroups, where q is the smallest prime divisor of n.


Author(s):  
Abraham Love Prins

The Chevalley–Dickson simple group G24 of Lie type G2 over the Galois field GF4 and of order 251596800=212.33.52.7.13 has a class of maximal subgroups of the form 24+6:A5×3, where 24+6 is a special 2-group with center Z24+6=24. Since 24 is normal in 24+6:A5×3, the group 24+6:A5×3 can be constructed as a nonsplit extension group of the form G¯=24·26:A5×3. Two inertia factor groups, H1=26:A5×3 and H2=26:6×2, are obtained if G¯ acts on 24. In this paper, the author presents a method to compute all projective character tables of H2. These tables become very useful if one wants to construct the ordinary character table of G¯ by means of Fischer–Clifford theory. The method presented here is very effective to compute the irreducible projective character tables of a finite soluble group of manageable size.


1989 ◽  
Vol s2-40 (2) ◽  
pp. 244-256 ◽  
Author(s):  
R. A. Bryce ◽  
John Cossey

1970 ◽  
Vol 2 (3) ◽  
pp. 347-357 ◽  
Author(s):  
R. M. Bryant ◽  
R. A. Bryce ◽  
B. Hartley

We prove here that the (saturated) formation generated by a finite soluble group has only finitely many (saturated) subformations. This answers a question asked by Professor W. Gaschütz. Some partial results are also given in the case of a formation generated by an arbitrary finite group.


2000 ◽  
Vol 42 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Clara Franchi

For each m≥1, u_{m}(G) is defined to be the intersection of the normalizers of all the subnormal subgroups of defect at most m in G. An ascending chain of subgroups u_{m,i}(G) is defined by setting u_{m,i}(G)/u_{m,i−1}(G)=u_{m}(G/u_{m,i−1}(G)). If u_{m,n}(G)=G, for some integer n, the m-Wielandt length of G is the minimal of such n.In [3], Bryce examined the structure of a finite soluble group with given m-Wielandt length, in terms of its polynilpotent structure. In this paper we extend his results to infinite soluble groups.1991 Mathematics Subject Classification. 20E15, 20F22.


1972 ◽  
Vol 7 (1) ◽  
pp. 101-104 ◽  
Author(s):  
D.W. Barnes

Let G = H0 > H1 > … > Hr = 1 and G = K0 > K1 > … > Kr =1 be two chief series of the finite soluble group G. Suppose Mi complements Hi/Hi+1. Then Mi also complements precisely one factor Kj/Kj+1, of the second series, and this Kj/Kj+1 is G-isomorphic to Hi/Hi+1. It is shown that complements Mi can be chosen for the complemented factors Hi/Hi+1 of the first series in such a way that distinct Mi complement distinct factors of the second series, thus establishing a one-to-one correspondence between the complemented factors of the two series. It is also shown that there is a one-to-one correspondence between the factors of the two series (but not in general constructible in the above manner), such that corresponding factors are G-isomorphic and have the same number of complements.


Sign in / Sign up

Export Citation Format

Share Document