On Orthogonal Expansions with Respect to the Generalized Jacobi Weight

2012 ◽  
Vol 63 (3-4) ◽  
pp. 1177-1193 ◽  
Author(s):  
Bujar Xh. Fejzullahu
2017 ◽  
Vol 06 (01) ◽  
pp. 1750003
Author(s):  
Shulin Lyu ◽  
Yang Chen

We consider the generalized Jacobi weight [Formula: see text], [Formula: see text]. As is shown in [D. Dai and L. Zhang, Painlevé VI and Henkel determinants for the generalized Jocobi weight, J. Phys. A: Math. Theor. 43 (2010), Article ID:055207, 14pp.], the corresponding Hankel determinant is the [Formula: see text]-function of a particular Painlevé VI. We present all the possible asymptotic expansions of the solution of the Painlevé VI equation near [Formula: see text] and [Formula: see text] for generic [Formula: see text]. For four special cases of [Formula: see text] which are related to the dimension of the Hankel determinant, we can find the exceptional solutions of the Painlevé VI equation according to the results of [A. Eremenko, A. Gabrielov and A. Hinkkanen, Exceptional solutions to the Painlevé VI equation, preprint (2016), arXiv:1602.04694 ], and thus give another characterization of the Hankel determinant.


Author(s):  
Sheehan Olver ◽  
Yuan Xu

Abstract Orthogonal polynomials on quadratic curves in the plane are studied. These include orthogonal polynomials on ellipses, parabolas, hyperbolas and two lines. For an integral with respect to an appropriate weight function defined on any quadratic curve, an explicit basis of orthogonal polynomials is constructed in terms of two families of orthogonal polynomials in one variable. Convergence of the Fourier orthogonal expansions is also studied in each case. We discuss applications to the Fourier extension problem, interpolation of functions with singularities or near singularities and the solution of Schrödinger’s equation with nondifferentiable or nearly nondifferentiable potentials.


Sign in / Sign up

Export Citation Format

Share Document