recurrence coefficients
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2978
Author(s):  
Pengju Han ◽  
Yang Chen

We study the Hankel determinant generated by a singularly perturbed Jacobi weight w(x,s):=(1−x)α(1+x)βe−s1−x,x∈[−1,1],α>0,β>0s≥0. If s=0, it is reduced to the classical Jacobi weight. For s>0, the factor e−s1−x induces an infinitely strong zero at x=1. For the finite n case, we obtain four auxiliary quantities Rn(s), rn(s), R˜n(s), and r˜n(s) by using the ladder operator approach. We show that the recurrence coefficients are expressed in terms of the four auxiliary quantities with the aid of the compatibility conditions. Furthermore, we derive a shifted Jimbo–Miwa–Okamoto σ-function of a particular Painlevé V for the logarithmic derivative of the Hankel determinant Dn(s). By variable substitution and some complicated calculations, we show that the quantity Rn(s) satisfies the four Painlevé equations. For the large n case, we show that, under a double scaling, where n tends to ∞ and s tends to 0+, such that τ:=n2s is finite, the scaled Hankel determinant can be expressed by a particular PIII′.


Author(s):  
Andrew F Celsus ◽  
Alfredo Deaño ◽  
Daan Huybrechs ◽  
Arieh Iserles

Abstract In this paper, we investigate algebraic, differential and asymptotic properties of polynomials $p_n(x)$ that are orthogonal with respect to the complex oscillatory weight $w(x)=\mathrm {e}^{\mathrm {i}\omega x}$ on the interval $[-1,1]$, where $\omega>0$. We also investigate related quantities such as Hankel determinants and recurrence coefficients. We prove existence of the polynomials $p_{2n}(x)$ for all values of $\omega \in \mathbb {R}$, as well as degeneracy of $p_{2n+1}(x)$ at certain values of $\omega $ (called kissing points). We obtain detailed asymptotic information as $\omega \to \infty $, using recent theory of multivariate highly oscillatory integrals, and we complete the analysis with the study of complex zeros of Hankel determinants, using the large $\omega $ asymptotics obtained before.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 534
Author(s):  
Lino G. Garza ◽  
Luis E. Garza ◽  
Edmundo J. Huertas

In this contribution we obtain some algebraic properties associated with the sequence of polynomials orthogonal with respect to the Sobolev-type inner product:p,qs=∫Rp(x)q(x)dμ(x)+M0p(0)q(0)+M1p′(0)q′(0), where p,q are polynomials, M0, M1 are non-negative real numbers and μ is a symmetric positive measure. These include a five-term recurrence relation, a three-term recurrence relation with rational coefficients, and an explicit expression for its norms. Moreover, we use these results to deduce asymptotic properties for the recurrence coefficients and a nonlinear difference equation that they satisfy, in the particular case when dμ(x)=e−x4dx.


Author(s):  
Pengju Han ◽  
Yang Chen

In this paper, we study the recurrence coefficients of a deformed Hermite polynomials orthogonal with respect to the weight [Formula: see text] where [Formula: see text] and [Formula: see text]. It is an extension of Chen and Feigin [J. Phys. A., Math. Gen. 39 (2006) 12381–12393]. By using the ladder operator technique, we show that the recurrence coefficients satisfy a particular Painlevé IV equation and the logarithmic derivative of the associated Hankel determinant satisfies the Jimbo–Miwa–Okamoto [Formula: see text] form of the Painlevé IV. Furthermore, the asymptotics of the recurrence coefficients and the Hankel determinant are obtained at the hard-edge limit and can be expressed in terms of the solutions to the Painlevé XXXIV and the [Formula: see text]-form of the Painlevé II equation at the soft-edge limit, respectively. In addition, for the special case [Formula: see text], we obtain the asymptotics of the Hankel determinant at the hard-edge limit via semi-classical Laguerre polynomials with respect to the weight [Formula: see text], which reproduced the result in Charlier and Deano, [Integr. Geom. Methods Appl. 14(2018) 018 (p. 43)].


Author(s):  
Jie hu ◽  
Galina Filipuk ◽  
Yang Chen

It is known from [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.] that the recurrence coefficients of discrete orthogonal polynomials on the nonnegative integers with hypergeometric weights satisfy a system of nonlinear difference equations. There is also a connection to the solutions of the [Formula: see text]-form of the sixth Painlevé equation (one of the parameters of the weights being the independent variable in the differential equation) [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.]. In this paper, we derive a second-order nonlinear difference equation from the system and present explicit formulas showing how this difference equation arises from the Bäcklund transformations of the sixth Painlevé equation. We also present an alternative way to derive the connection between the recurrence coefficients and the solutions of the sixth Painlevé equation.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1250
Author(s):  
Abey S. Kelil ◽  
Appanah R. Appadu

Polynomials that are orthogonal with respect to a perturbation of the Freud weight function by some parameter, known to be modified Freudian orthogonal polynomials, are considered. In this contribution, we investigate certain properties of semi-classical modified Freud-type polynomials in which their corresponding semi-classical weight function is a more general deformation of the classical scaled sextic Freud weight |x|αexp(−cx6),c>0,α>−1. Certain characterizing properties of these polynomials such as moments, recurrence coefficients, holonomic equations that they satisfy, and certain non-linear differential-recurrence equations satisfied by the recurrence coefficients, using compatibility conditions for ladder operators for these orthogonal polynomials, are investigated. Differential-difference equations were also obtained via Shohat’s quasi-orthogonality approach and also second-order linear ODEs (with rational coefficients) satisfied by these polynomials. Modified Freudian polynomials can also be obtained via Chihara’s symmetrization process from the generalized Airy-type polynomials. The obtained linear differential equation plays an essential role in the electrostatic interpretation for the distribution of zeros of the corresponding Freudian polynomials.


Sign in / Sign up

Export Citation Format

Share Document