reflection coefficients
Recently Published Documents


TOTAL DOCUMENTS

1163
(FIVE YEARS 180)

H-INDEX

47
(FIVE YEARS 4)

Author(s):  
В.В. Шагаев

Expressions are derived for the reflection coefficients of electromagnetic waves with "p" and "s" type polarizations from a semi-infinite dielectric medium having an inhomogeneous layer. The influence of the layer was taken into account by the method of perturbation theory in a quadratic approximation of the layer thickness. A method is proposed for converting expressions derived using perturbation theory into other expressions that give more accurate values of the reflection coefficient. The angular dependences of the reflection coefficient obtained by the developed method are compared with those obtained by the numerical solution of electrodynamic equations. Requirements for the layer characteristics are formulated to minimize the error of the analytical solution.


2021 ◽  
Author(s):  
Shuang Pang ◽  
Yang Zeng ◽  
Qi Yang ◽  
Bin Deng ◽  
Hong-Qiang Wang

Abstract In the terahertz band, the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section (RCS) measurement, which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations. Based on the high-frequency estimation method of physical optics (PO), a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object’s facets. Simulations on the model of SLICY were conducted, the inversed RCS of the lossy prototype was obtained using the proposed method. Via comparing the inversed RCS with the calculated results, the validity of the proposed method is demonstrated. The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.


Author(s):  
George Lisachuk ◽  
Ruslan Kryvobok ◽  
Artem Zakharov ◽  
Valentyna Voloshchuk ◽  
Mykyta Maistat ◽  
...  

The object of the work is the technology of manufacturing radio-absorbing ceramics on the basis of facing tiles with the addition of silicon carbide. The method of hydrostatic weighing in water was used to determine the physical properties. X-ray phase analysis and spectral characteristics - transmission and reflection coefficients, in the frequency range 25.8 – 37.5 GHz were also determined. Tiles consist of two layers. First, separately obtain a press powder for the I and II layer of raw materials in a given amount, which were weighed, moistened, ground in a ball mill; the slip was dried in an oven, then ground and passed through a suitable sieve. The moistened press powder for the first layer was weighed and poured into a mold for pressing, after which the moistened press powder for the second layer was weighed and poured into the mold for pressing. The resulting raw material was dried. The semi-finished product was covered with watering and placed in an oven. The finished semi-finished product was fired in a silite furnace. The two-layer tile with an irrigated covering made on the developed technology was characterized by the following characteristics: water absorption – 9,8 %, imaginary density – 1,90 g/cm3. The developed ceramics, according to the classification, can be referred to the class of radio-absorbing ceramics.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3061
Author(s):  
Qiang Liu ◽  
Songlin Sun ◽  
Jijiang Hou ◽  
Hongbiao Jia ◽  
Michel Kadoch

This paper considers a non-orthogonal multiple access (NOMA)-assisted ambient backscatter communication (AmBC) system. To maximize the achievable sum rate (ASR) of the AmBC system, a joint optimization problem over a backscatter device (BD) grouping strategy, reflection coefficients, and decoding order is formulated, where the BD grouping strategy contains the number of BD groups and the BD allocation strategy. The BD grouping strategy, the reflection coefficients, and the decoding order are all intertwined, and the global search is extremely complex. As a result, we propose a four-step optimization algorithm. First, we give the closed-form optimal solution of the BD decoding order and reflection coefficient for a given grouping strategy. Then, for a given number of BD groups, we propose a low-complexity BD allocation strategy based on the complexity–performance trade-off. Finally, the number of BD groups with the largest ASR is selected as the global optimal number of BD groups. The simulation results show that the proposed four-step optimization algorithm is better than the benchmark solution.


2021 ◽  
Vol 56 ◽  
pp. 89-96
Author(s):  
V. S. Kretulis ◽  

A investigation of the dependence of relative horizontal illumination level and brightness of the most common types of road surface in Ukraine when using LED illuminators with different spectral distribution of radiation in the presence of aerial aerosols of different optical densities (strong, moderate, weak fog and haze) is performed. Mathematical models of LED illuminators with correlated color temperature Tcc = (2200÷8400) K in the visible range of the spectrum λ = (380÷780) nm have been created. Their use together with the selected model of the spectral dependence of the scattering index β (λ) (Ferdinandоv’s model) of the atmospheric environment with the presence of aqueous aerosols, which cause a limited meteorological range of visibility MOR = (0.1÷3) km, showed a slight (1%) advantage in creation of illumination from lamps of a warm spectrum of radiation (TCC = 2200 K) in comparison with cold (Tcc = 8400 K) for cases of strong fogs with MOR = 100 m. Calculations involving the analysis of mathematical modeling of the spectral distribution of the reflection coefficients for two types of road surface (new and worn asphalt) proved that when using warm spectrum illuminators the brightness of the most common in Ukraine old asphalt pavement in the conditions of MOR = 100 m by 5% exceeds the corresponding value of the cold spectrum emitters. This difference gradually decreases as visibility is improved due to the weaker spectral dependence of β (λ) and at MV = 3 km is 4.5%. The advantage of using warm spectrum illuminators will be significantly enhanced for the case of estimating the brightness of the coverage over long distances, for example, airfield runways, which will significantly improve flight safety.


Author(s):  
I. I. Ismailov ◽  
Kh. A. Babakhanova ◽  
A. A. Sadriddinov ◽  
M. A. Babahanova ◽  
D. Sh. Saidova

The article investigates the surface and optical properties of calcium carbonate paper obtained at the UzbekChinese enterprise Fergana stone paper company (Uzbekistan), in order to identify the possibility of their use at printing enterprises for printing multicolor products using traditional printing methods. According to the results of a quantitative assessment of the surface quality by the indirect Beck method, we can say that paper sample 1 has a smoothness like coated paper (750–1500 s), paper samples 2 and 3 – like calendered paper, so that these paper samples can be recommended for prints with increased quality requirements. Smaller values of roughness Ra and small depressions, expressed by darkening in the topographic AFM images, characterized sufficient homogeneity and density of the structure. It was also revealed that the surface of the paper samples has a high ability to specularly reflect the incident light, since the percentage of surface reflection is similar to that of coated papers. Samples of paper have a whiteness of about 90 % and do not have a tint, since the difference between the maximum and minimum values of the reflection coefficients on a white stack is not more than 10 %. The tested paper samples can be recommended without restrictions for double-sided printing, since the opacity index is more than 92 %.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Behrouz Aghaei ◽  
Afshin Mohseni Arasteh ◽  
Kamran Lari ◽  
Masoud Torabi Azad

In this research, a comprehensive study is performed to investigate the interaction of regular waves with the impermeable seawall of the Chabahar port. First, a MIKE 21 SW model is used to transform the deep-water wave data to the nearshore zone. Then, the interaction of waves with the seawall is simulated using a well-known numerical smoothed particle hydrodynamics model named DualSPHysics. After validating the numerical results with the experimental data, a parametric study is performed to evaluate the effects of the wave height, wave period, and the slope of the seawall on the water level fluctuations and the wave reflection coefficient. The results showed that increasing the wave height slightly decreases the reflection coefficient. Meanwhile, a direct relationship was found between the wave height and the water level fluctuations near the wall. Generally, increasing the wave period resulted in higher reflection coefficients and water level fluctuations. Both the reflection coefficient and the water level fluctuations are greatly dependent on the slope of the seawall. Steeper slopes resulted in higher reflection coefficients and lower water level fluctuations near the seawall.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012020
Author(s):  
V P Butukhanov ◽  
Ju L Lomukhin ◽  
E B Atutov

Abstract The work is devoted to the study of the structure of waves excited in bordering media under radar irradiation of both smooth and rough interfaces. It is found that counter propagating waves are excited in bordering absorbing media, which determine backward reflection at the interface. On the other hand, the reflection of the counter propagating wave excites waves with a negative angle of refraction. It was found in this work that when the interface is irradiated with a plane wave during polarization, when the electric field strength vector lies in the plane of incidence, the backward reflection and the refracted wave are increases, and the specular reflection decreases. Electrodynamics models of the back reflection coefficients are developed for both the case of smooth and for the case of uneven interfaces between the media.


Sign in / Sign up

Export Citation Format

Share Document