scholarly journals Chain Geometry Determined by the Affine Group

2012 ◽  
Vol 63 (3-4) ◽  
pp. 1409-1420 ◽  
Author(s):  
Krzysztof Prażmowski ◽  
Aneta Sulima
Keyword(s):  
2013 ◽  
Vol 50 (2) ◽  
pp. 258-265
Author(s):  
Pál Hegedűs

In this paper we analyse the natural permutation module of an affine permutation group. For this the regular module of an elementary Abelian p-group is described in detail. We consider the inequivalent permutation modules coming from nonconjugate complements. We prove their strong structural similarity well exceeding the fact that they have equal Brauer characters.


2021 ◽  
Vol 112 (1) ◽  
Author(s):  
Christine Rademacher ◽  
Hans-Bert Rademacher

AbstractFor a polygon $$x=(x_j)_{j\in \mathbb {Z}}$$ x = ( x j ) j ∈ Z in $$\mathbb {R}^n$$ R n we consider the midpoints polygon $$(M(x))_j=\left( x_j+x_{j+1}\right) /2.$$ ( M ( x ) ) j = x j + x j + 1 / 2 . We call a polygon a soliton of the midpoints mapping M if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on an orbit of a one-parameter subgroup of the affine group acting on $$\mathbb {R}^n.$$ R n . These smooth curves are also characterized as solutions of the differential equation $$\dot{c}(t)=Bc (t)+d$$ c ˙ ( t ) = B c ( t ) + d for a matrix B and a vector d. For $$n=2$$ n = 2 these curves are curves of constant generalized-affine curvature $$k_{ga}=k_{ga}(B)$$ k ga = k ga ( B ) depending on B parametrized by generalized-affine arc length unless they are parametrizations of a parabola, an ellipse, or a hyperbola.


1993 ◽  
Vol 08 (31) ◽  
pp. 2937-2942
Author(s):  
A. V. BRATCHIKOV

The BLZ method for the analysis of renormalizability of the O(N)/O(N − 1) model is extended to the σ-model built on an arbitrary homogeneous space G/H and in arbitrary coordinates. For deriving Ward-Takahashi (WT) identities an imbedding of the transformation group G in an affine group is used. The structure of the renormalized action is found. All the infinities can be absorbed in a coupling constants renormalization and in a renormalization of auxiliary constants which are related to the imbedding.


2021 ◽  
Vol 6 (11) ◽  
pp. 11655-11685
Author(s):  
Tong Wu ◽  
◽  
Yong Wang

<abstract><p>In this paper, we compute sub-Riemannian limits of Gaussian curvature for a Euclidean $ C^2 $-smooth surface in the generalized affine group and the generalized BCV spaces away from characteristic points and signed geodesic curvature for Euclidean $ C^2 $-smooth curves on surfaces. We get Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document