Asymptotic Constant in Approximation of Twice Differentiable Functions by a Class of Positive Linear Operators

2018 ◽  
Vol 73 (2) ◽  
Author(s):  
Radu Păltănea
2000 ◽  
Vol 37 (3) ◽  
pp. 765-777 ◽  
Author(s):  
José A. Adell ◽  
Alberto Lekuona

In this paper, we consider positive linear operators L representable in terms of stochastic processes Z having right-continuous non-decreasing paths. We introduce the equivalent notions of derived operator and derived process of order n of L and Z, respectively. When acting on absolutely continuous functions of order n, we obtain a Taylor's formula of the same order for such operators, thus extending to a positive linear operator setting the classical Taylor's formula for differentiable functions. It is also shown that the operators satisfying Taylor's formula are those which preserve generalized convexity of order n. We illustrate the preceding results by considering discrete time processes, counting and renewal processes, centred subordinators and the Yule birth process.


2000 ◽  
Vol 37 (03) ◽  
pp. 765-777 ◽  
Author(s):  
José A. Adell ◽  
Alberto Lekuona

In this paper, we consider positive linear operators L representable in terms of stochastic processes Z having right-continuous non-decreasing paths. We introduce the equivalent notions of derived operator and derived process of order n of L and Z, respectively. When acting on absolutely continuous functions of order n, we obtain a Taylor's formula of the same order for such operators, thus extending to a positive linear operator setting the classical Taylor's formula for differentiable functions. It is also shown that the operators satisfying Taylor's formula are those which preserve generalized convexity of order n. We illustrate the preceding results by considering discrete time processes, counting and renewal processes, centred subordinators and the Yule birth process.


1983 ◽  
Vol 27 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Heinz H. Gonska

The aim of this note is to prove a theorem on the pointwise degree of approximation of continuously differentiable functions by positive linear operators. As can be seen from the applications to Bernstein and Hermite-Fejér operators, our inequality yields better constants and sometimes even a higher degree of approximation than the known general results.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


2020 ◽  
Vol 70 (3) ◽  
pp. 753-758
Author(s):  
Marcel Polakovič

AbstractLet 𝓖D(𝓗) denote the generalized effect algebra consisting of all positive linear operators defined on a dense linear subspace D of a Hilbert space 𝓗. The D-weak operator topology (introduced by other authors) on 𝓖D(𝓗) is investigated. The corresponding closure of the set of bounded elements of 𝓖D(𝓗) is the whole 𝓖D(𝓗). The closure of the set of all unbounded elements of 𝓖D(𝓗) is also the set 𝓖D(𝓗). If Q is arbitrary unbounded element of 𝓖D(𝓗), it determines an interval in 𝓖D(𝓗), consisting of all operators between 0 and Q (with the usual ordering of operators). If we take the set of all bounded elements of this interval, the closure of this set (in the D-weak operator topology) is just the original interval. Similarly, the corresponding closure of the set of all unbounded elements of the interval will again be the considered interval.


Sign in / Sign up

Export Citation Format

Share Document