scholarly journals Geometricity for derived categories of algebraic stacks

2016 ◽  
Vol 22 (4) ◽  
pp. 2535-2568 ◽  
Author(s):  
Daniel Bergh ◽  
Valery A. Lunts ◽  
Olaf M. Schnürer
2018 ◽  
Vol 18 (5) ◽  
pp. 1087-1111 ◽  
Author(s):  
Jack Hall ◽  
Amnon Neeman ◽  
David Rydh

Let $X$ be a quasi-compact and quasi-separated scheme. There are two fundamental and pervasive facts about the unbounded derived category of $X$: (1) $\mathsf{D}_{\text{qc}}(X)$ is compactly generated by perfect complexes and (2) if $X$ is noetherian or has affine diagonal, then the functor $\unicode[STIX]{x1D6F9}_{X}:\mathsf{D}(\mathsf{QCoh}(X))\rightarrow \mathsf{D}_{\text{qc}}(X)$ is an equivalence. Our main results are that for algebraic stacks in positive characteristic, the assertions (1) and (2) are typically false.


2017 ◽  
Vol 153 (11) ◽  
pp. 2318-2367 ◽  
Author(s):  
Jack Hall ◽  
David Rydh

We develop a theory of unbounded derived categories of quasi-coherent sheaves on algebraic stacks. In particular, we show that these categories are compactly generated by perfect complexes for stacks that either have finite stabilizers or are local quotient stacks. We also extend Toën and Antieau–Gepner’s results on derived Azumaya algebras and compact generation of sheaves on linear categories from derived schemes to derived Deligne–Mumford stacks. These are all consequences of our main theorem: compact generation of a presheaf of triangulated categories on an algebraic stack is local for the quasi-finite flat topology.


2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


Author(s):  
Federico Scavia

Abstract Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic $p>0$ . We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when $p=2$ .


2021 ◽  
Vol 573 ◽  
pp. 270-296
Author(s):  
Lingling Tan ◽  
Dingguo Wang ◽  
Tiwei Zhao

2019 ◽  
Vol 25 (3) ◽  
Author(s):  
Pieter Belmans ◽  
Lie Fu ◽  
Theo Raedschelders
Keyword(s):  

2001 ◽  
Vol 111 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Tomás L Gómez
Keyword(s):  

2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.


Sign in / Sign up

Export Citation Format

Share Document