matrix algebras
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 96)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
D. C. L. Bessades ◽  
R. B. dos Santos ◽  
A. C. Vieira

Let [Formula: see text] be a field of characteristic zero and [Formula: see text] the algebra of [Formula: see text] matrices over [Formula: see text]. By the classical Amitsur–Levitzki theorem, it is well known that [Formula: see text] is the smallest degree of a standard polynomial identity of [Formula: see text]. A theorem due to Rowen shows that when the symplectic involution [Formula: see text] is considered, the standard polynomial of degree [Formula: see text] in symmetric variables is an identity of [Formula: see text]. This means that when only certain kinds of matrices are considered in the substitutions, the minimal degree of a standard identity may not remain being the same. In this paper, we present some results about the minimal degree of standard identities in skew or symmetric variables of odd degree of [Formula: see text] in the symplectic graded involution case. Along the way, we also present the minimal total degree of a double Capelli polynomial identity in symmetric variables of [Formula: see text] with transpose involution.


Author(s):  
Antonio Ioppolo ◽  
Plamen Koshlukov ◽  
Daniela La Mattina
Keyword(s):  

Author(s):  
Yassine El Maazouz ◽  
Marvin Anas Hahn ◽  
Gabriele Nebe ◽  
Mima Stanojkovski ◽  
Bernd Sturmfels

AbstractWe apply tropical geometry to study matrix algebras over a field with valuation. Using the shapes of min-max convexity, known as polytropes, we revisit the graduated orders introduced by Plesken and Zassenhaus. These are classified by the polytrope region. We advance the ideal theory of graduated orders by introducing their ideal class polytropes. This article emphasizes examples and computations. It offers first steps in the geometric combinatorics of endomorphism rings of configurations in affine buildings.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiuhai Fei ◽  
Haifang Zhang

The aim of the paper is to give a description of nonlinear Jordan derivable mappings of a certain class of generalized matrix algebras by Lie product square-zero elements. We prove that under certain conditions, a nonlinear Jordan derivable mapping Δ of a generalized matrix algebra by Lie product square-zero elements is a sum of an additive derivation δ and an additive antiderivation f . Moreover, δ and f are uniquely determined.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 519
Author(s):  
Satvik Singh ◽  
Ion Nechita

We analyze bipartite matrices and linear maps between matrix algebras, which are respectively, invariant and covariant, under the diagonal unitary and orthogonal groups' actions. By presenting an expansive list of examples from the literature, which includes notable entries like the Diagonal Symmetric states and the Choi-type maps, we show that this class of matrices (and maps) encompasses a wide variety of scenarios, thereby unifying their study. We examine their linear algebraic structure and investigate different notions of positivity through their convex conic manifestations. In particular, we generalize the well-known cone of completely positive matrices to that of triplewise completely positive matrices and connect it to the separability of the relevant invariant states (or the entanglement breaking property of the corresponding quantum channels). For linear maps, we provide explicit characterizations of the stated covariance in terms of their Kraus, Stinespring, and Choi representations, and systematically analyze the usual properties of positivity, decomposability, complete positivity, and the like. We also describe the invariant subspaces of these maps and use their structure to provide necessary and sufficient conditions for separability of the associated invariant bipartite states.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1373
Author(s):  
Louis H. Kauffman

This paper explains a method of constructing algebras, starting with the properties of discrimination in elementary discrete systems. We show how to use points of view about these systems to construct what we call iterant algebras and how these algebras naturally give rise to the complex numbers, Clifford algebras and matrix algebras. The paper discusses the structure of the Schrödinger equation, the Dirac equation and the Majorana Dirac equations, finding solutions via the nilpotent method initiated by Peter Rowlands.


2021 ◽  
Vol 621 ◽  
pp. 50-85 ◽  
Author(s):  
Zachary Cramer ◽  
Laurent W. Marcoux ◽  
Heydar Radjavi

Sign in / Sign up

Export Citation Format

Share Document