scholarly journals GEOMETRIC STRUCTURES MODELED ON SMOOTH PROJECTIVE HOROSPHERICAL VARIETIES OF PICARD NUMBER ONE

2017 ◽  
Vol 22 (2) ◽  
pp. 361-386 ◽  
Author(s):  
SHIN-YOUNG KIM
2015 ◽  
Vol 429 ◽  
pp. 413-446 ◽  
Author(s):  
Gianfranco Casnati ◽  
Daniele Faenzi ◽  
Francesco Malaspina
Keyword(s):  

2021 ◽  
Author(s):  
Hanghang Zhou ◽  
Lan Wang ◽  
Hang Shi ◽  
Huan Zhang ◽  
Yue Wang ◽  
...  

Combining different semiconductor materials with diverse geometric structures and energy level configurations is an effective strategy for constructing high-activity heterostructure photocatalyst. Using the solvothermal method, 1D TiO2 nanobelts were uniformly...


2011 ◽  
Vol 227 (1) ◽  
pp. 459-471 ◽  
Author(s):  
Linyu Peng ◽  
Huafei Sun ◽  
Dandi Sun ◽  
Jin Yi

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Qiang Chen ◽  
Jianyuan Xiao ◽  
Peifeng Fan

Abstract A class of high-order canonical symplectic structure-preserving geometric algorithms are developed for high-quality simulations of the quantized Dirac-Maxwell theory based strong-field quantum electrodynamics (SFQED) and relativistic quantum plasmas (RQP) phenomena. With minimal coupling, the Lagrangian density of an interacting bispinor-gauge fields theory is constructed in a conjugate real fields form. The canonical symplectic form and canonical equations of this field theory are obtained by the general Hamilton’s principle on cotangent bundle. Based on discrete exterior calculus, the gauge field components are discreted to form a cochain complex, and the bispinor components are naturally discreted on a staggered dual lattice as combinations of differential forms. With pull-back and push-forward gauge covariant derivatives, the discrete action is gauge invariant. A well-defined discrete canonical Poisson bracket generates a semi-discrete lattice canonical field theory (LCFT), which admits the canonical symplectic form, unitary property, gauge symmetry and discrete Poincaré subgroup, which are good approximations of the original continuous geometric structures. The Hamiltonian splitting method, Cayley transformation and symmetric composition technique are introduced to construct a class of high-order numerical schemes for the semi-discrete LCFT. These schemes involve two degenerate fermion flavors and are locally unconditional stable, which also preserve the geometric structures. Admitting Nielsen-Ninomiya theorem, the continuous chiral symmetry is partially broken on the lattice. As an extension, a pair of discrete chiral operators are introduced to reconstruct the lattice chirality. Equipped with statistically quantization-equivalent ensemble models of the Dirac vacuum and non-trivial plasma backgrounds, the schemes are expected to have excellent performance in secular simulations of relativistic quantum effects, where the numerical errors of conserved quantities are well bounded by very small values without coherent accumulation. The algorithms are verified in detail by numerical energy spectra. Real-time LCFT simulations are successfully implemented for the nonlinear Schwinger mechanism induced e-e+ pairs creation and vacuum Kerr effect, where the nonlinear and non-perturbative features captured by the solutions provide a complete strong-field physical picture in a very wide range, which open a new door toward high-quality simulations in SFQED and RQP fields.


Sign in / Sign up

Export Citation Format

Share Document