scholarly journals On the variance of squarefree integers in short intervals and arithmetic progressions

Author(s):  
Ofir Gorodetsky ◽  
Kaisa Matomäki ◽  
Maksym Radziwiłł ◽  
Brad Rodgers

AbstractWe evaluate asymptotically the variance of the number of squarefree integers up to x in short intervals of length $$H < x^{6/11 - \varepsilon }$$ H < x 6 / 11 - ε and the variance of the number of squarefree integers up to x in arithmetic progressions modulo q with $$q > x^{5/11 + \varepsilon }$$ q > x 5 / 11 + ε . On the assumption of respectively the Lindelöf Hypothesis and the Generalized Lindelöf Hypothesis we show that these ranges can be improved to respectively $$H < x^{2/3 - \varepsilon }$$ H < x 2 / 3 - ε and $$q > x^{1/3 + \varepsilon }$$ q > x 1 / 3 + ε . Furthermore we show that obtaining a bound sharp up to factors of $$H^{\varepsilon }$$ H ε in the full range $$H < x^{1 - \varepsilon }$$ H < x 1 - ε is equivalent to the Riemann Hypothesis. These results improve on a result of Hall (Mathematika 29(1):7–17, 1982) for short intervals, and earlier results of Warlimont, Vaughan, Blomer, Nunes and Le Boudec in the case of arithmetic progressions.

2019 ◽  
Vol 15 (04) ◽  
pp. 825-862
Author(s):  
Adrian W. Dudek ◽  
Loïc Grenié ◽  
Giuseppe Molteni

We prove explicit versions of Cramér’s theorem for primes in arithmetic progressions, on the assumption of the generalized Riemann hypothesis.


Author(s):  
D. R. Heath-Brown

A positive integer n is called square-full if p2|n for every prime factor p of n. Let Q(x) denote the number of square-full integers up to x. It was shown by Bateman and Grosswald [1] thatBateman and Grosswald also remarked that any improvement in the exponent would imply a ‘quasi-Riemann Hypothesis’ of the type for . Thus (1) is essentially as sharp as one can hope for at present. From (1) it follows that, for the number of square-full integers in a short interval, we havewhen and y = o (x½). (It seems more suggestive) to write the interval as (x, x + x½y]) than (x, x + y], since only intervals of length x½ or more can be of relevance here.)


Author(s):  
D. R. Heath-Brown

In this paper we shall investigate the occurrence of almost-primes in arithmetic progressions and in short intervals. These problems correspond to two well-known conjectures concerning prime numbers. The first conjecture is that, if (l, k) = 1, there exists a prime p satisfying


2018 ◽  
Vol 14 (08) ◽  
pp. 2291-2301 ◽  
Author(s):  
Moni Kumari ◽  
M. Ram Murty

In this paper, we give some results on simultaneous non-vanishing and simultaneous sign-changes for the Fourier coefficients of two modular forms. More precisely, given two modular forms [Formula: see text] and [Formula: see text] with Fourier coefficients [Formula: see text] and [Formula: see text] respectively, we consider the following questions: existence of infinitely many primes [Formula: see text] such that [Formula: see text]; simultaneous non-vanishing in the short intervals and in arithmetic progressions; simultaneous sign changes in short intervals.


2018 ◽  
Vol 155 (1) ◽  
pp. 126-163 ◽  
Author(s):  
Andrew Granville ◽  
Adam J. Harper ◽  
K. Soundararajan

Halász’s theorem gives an upper bound for the mean value of a multiplicative function$f$. The bound is sharp for general such$f$, and, in particular, it implies that a multiplicative function with$|f(n)|\leqslant 1$has either mean value$0$, or is ‘close to’$n^{it}$for some fixed$t$. The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions. We use these results to obtain new, arguably simpler, proofs that there are always primes in short intervals (Hoheisel’s theorem), and that there are always primes near to the start of an arithmetic progression (Linnik’s theorem).


Sign in / Sign up

Export Citation Format

Share Document