scholarly journals A numerical criterion for generalised Monge-Ampère equations on projective manifolds

Author(s):  
Ved V. Datar ◽  
Vamsi Pritham Pingali
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2019 ◽  
Vol 114 (3) ◽  
pp. 343-352
Author(s):  
Norm Levenberg ◽  
Sione Ma’u
Keyword(s):  

2006 ◽  
Vol 27 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Gang Tian* ◽  
Zhou Zhang

2015 ◽  
Vol 423 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Per Åhag ◽  
Urban Cegrell ◽  
Hoàng Hiệp Phạm
Keyword(s):  

2013 ◽  
Vol 17 (1) ◽  
pp. 273-309 ◽  
Author(s):  
Enrique Artal Bartolo ◽  
José Ignacio Cogolludo-Agustín ◽  
Daniel Matei

2005 ◽  
Vol 17 (5) ◽  
Author(s):  
Gian Mario Besana ◽  
Aldo Biancofiore
Keyword(s):  

1997 ◽  
Vol 46 (2) ◽  
pp. 335-373 ◽  
Author(s):  
Jon G. Wolfson
Keyword(s):  

2008 ◽  
Vol 262 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Sławomir Dinew
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document