prescribed asymptotic behavior
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 918
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Ewa Schmeidel

We investigate the higher order nonlinear discrete Volterra equations. We study solutions with prescribed asymptotic behavior. For example, we establish sufficient conditions for the existence of asymptotically polynomial, asymptotically periodic or asymptotically symmetric solutions. On the other hand, we are dealing with the problem of approximation of solutions. Among others, we present conditions under which any bounded solution is asymptotically periodic. Using our techniques, based on the iterated remainder operator, we can control the degree of approximation. In this paper we choose a positive non-increasing sequence u and use o(un) as a measure of approximation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hendrik Baumann ◽  
Thomas Hanschke

AbstractLinear differential equations usually arise from mathematical modeling of physical experiments and real-world problems. In most applications these equations are linked to initial or boundary conditions. But sometimes the solution under consideration is characterized by its asymptotic behavior, which leads to the question how to infer from the asymptotic growth of a solution to its initial values. In this paper we show that under some mild conditions the initial values of the desired solution can be computed by means of a continuous-time analogue of a modified matrix continued fraction. For numerical applications we develop forward and backward algorithms which behave well in most situations. The topic is closely related to the theory of special functions and its extension to higher-dimensional problems. Our investigations result in a powerful tool for solving some classical mathematical problems. To demonstrate the efficiency of our method we apply it to Poincaré type and Kneser’s differential equation.


Author(s):  
Janusz Migda

We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L'Hospital's rule, remainder operator, and the regional topology on the space of all sequences on a given Banach space. We establish sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we are dealing with the problem of approximation of solutions. Our technique allows us to control the degree of approximation of solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 666
Author(s):  
Hongfei Li ◽  
Limei Dai

In this paper, we will obtain the existence of viscosity solutions to the exterior Dirichlet problem for Hessian equations with prescribed asymptotic behavior at infinity by the Perron’s method. This extends the Ju–Bao results on Monge–Ampère equations det D 2 u = f ( x ) .


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Magdalena Nockowska-Rosiak

We consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a measure of approximation.


Author(s):  
Carlo Bardaro ◽  
Paul L. Butzer ◽  
Ilaria Mantellini ◽  
Gerhard Schmeisser

AbstractWe characterize the function space whose elements have a Mellin transform with exponential decay at infinity. This result can be seen as a generalization of the Paley–Wiener theorem for Mellin transforms. As a byproduct in a similar spirit, we also characterize spaces of functions whose distances from Mellin–Paley–Wiener spaces have a prescribed asymptotic behavior. This leads to Mellin–Sobolev type spaces of fractional order.


Sign in / Sign up

Export Citation Format

Share Document