scholarly journals Eigenfunction Expansions of Ultradifferentiable Functions and Ultradistributions. III. Hilbert Spaces and Universality

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Aparajita Dasgupta ◽  
Michael Ruzhansky

AbstractIn this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our papers (Dasgupta and Ruzhansky in Trans Am Math Soc 368(12):8481–8498, 2016) and (Dasgupta and Ruzhansky in Trans Am Math Soc Ser B 5:81–101, 2018). We prove that these spaces are perfect sequence spaces. As a consequence we describe the tensor structure of sequential mappings on the spaces of smooth type functions and characterise their adjoint mappings. As an application we prove the universality of the spaces of smooth type functions on compact manifolds without boundary.

1984 ◽  
Vol 27 (2) ◽  
pp. 105-113
Author(s):  
Fuensanta Andreu

The classical Dvoretzky-Rogers theorem states that if E is a normed space for which l1(E)=l1{E} (or equivalently , then E is finite dimensional (see [12] p. 67). This property still holds for any lp (l<p<∞) in place of l1 (see [7]p. 104 and [2] Corollary 5.5). Recently it has been shown that this result remains true when one replaces l1 by any non nuclear perfect sequence space having the normal topology (see [14]). In this context, De Grande-De Kimpe [4] gives an extension of the Devoretzky-Rogers theorem for perfect Banach sequence spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2066
Author(s):  
Messaoud Bounkhel ◽  
Mostafa Bachar

In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc. 1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class to our Banach space setting and to study the relationship between this concept and the generalised V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal. Appl. 2019, 475, 699–29].


1958 ◽  
Vol 11 (2) ◽  
pp. 83-85 ◽  
Author(s):  
H. F. Green

In a perfect sequence space α, on which a norm is defined, we can consider three types of convergence, namely projective convergence, strong projective convergence and distance convergence. In the space σ∞, when distance is defined in the usual way, the last two types of convergence coincide and are distinct from projective convergence ((2), p. 316). In the space σ1 all three types of convergence coincide ((2), p. 316). It will be shown in this paper that, if distance convergence and projective convergence coincide, then all three types of convergence coincide. It will not be assumed that the limit under one convergence is also the limit under the other convergence.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Rima Alaifari ◽  
Matthias Wellershoff

AbstractPhase retrieval refers to the problem of recovering some signal (which is often modelled as an element of a Hilbert space) from phaseless measurements. It has been shown that in the deterministic setting phase retrieval from frame coefficients is always unstable in infinite-dimensional Hilbert spaces (Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016) and possibly severely ill-conditioned in finite-dimensional Hilbert spaces (Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016). Recently, it has also been shown that phase retrieval from measurements induced by the Gabor transform with Gaussian window function is stable under a more relaxed semi-global phase recovery regime based on atoll functions (Alaifari in Found Comput Math 19(4):869–900, 2019). In finite dimensions, we present first evidence that this semi-global reconstruction regime allows one to do phase retrieval from measurements of bandlimited signals induced by the discrete Gabor transform in such a way that the corresponding stability constant only scales like a low order polynomial in the space dimension. To this end, we utilise reconstruction formulae which have become common tools in recent years (Bojarovska and Flinth in J Fourier Anal Appl 22(3):542–567, 2016; Eldar et al. in IEEE Signal Process Lett 22(5):638–642, 2014; Li et al. in IEEE Signal Process Lett 24(4):372–376, 2017; Nawab et al. in IEEE Trans Acoust Speech Signal Process 31(4):986–998, 1983).


Sign in / Sign up

Export Citation Format

Share Document