Digital image approach to tool path generation for surface machining

2018 ◽  
Vol 101 (9-12) ◽  
pp. 2547-2558 ◽  
Author(s):  
Ke Xu ◽  
Yingguang Li
2013 ◽  
Vol 774-776 ◽  
pp. 1438-1441
Author(s):  
Xiao Bing Chen ◽  
Kun Yu

The machining efficiency of conventional section plane method is low for complex mesh surface machining. An efficient method for tool path generation based on region intersection is proposed. The mesh surface is first divided into a series of intersection regions, then vertex curvatures in perpendicular directions of tool paths are estimated by local fitting method, and variable tool path intervals are computed according to the curvatures, scallop height and cutter radius, finally redundant cutter location points are removed according to machining precision. Experiment results indicate that tool paths generated by proposed method are avail to promote machining efficiency of complex mesh surface machining.


2010 ◽  
Vol 97-101 ◽  
pp. 2477-2480
Author(s):  
Xu Jing Yang ◽  
Guang Yong Sun ◽  
Qing Li

This paper proposes a new approach to tool path generation in precision machining of parts with sculptured surface. It aims to develop an effective NURBS fitting algorithm suitable for machining sophisticated parts requiring smooth profile on sculptured surface. In order to generate NURBS tool path with fewer control points, a dual-loop fitting technique is proposed in this paper. A general sculptured surface model is used to test the effectiveness of this method. It is shown that the proposed algorithm proved to be robust and effective in generating precise NURBS tool path. This makes the proposed algorithm suitable to convert conventional CNC tool path to more precise NURBS tool path. This approach may be of potential to be widely implemented in the manufacturing industry.


Author(s):  
Peter Jang ◽  
James A. Stori

This paper presents a new offsetting approach for tool path generation in three-axis sculptured surface machining. The approach generates tool paths with scallop, curvature, and force characteristics which make them suitable for high speed machining. An ellipse in the parametric space is used to approximate the intersection between the ball-end mill and the scallop surface for any cutter contact point on the surface. The envelope formed by these swept ellipses of varying dimension and orientation creates a constant scallop curve which is used to generate offset paths. The offset is developed incrementally, utilizing post-processing techniques to eliminate high-curvature regions in the trajectory. The offsetting approach can generate continuous spiraling trajectories which offer the benefit of minimal tool retractions. Results are shown for spiraling paths generated from both convex and non-convex boundaries.


Sign in / Sign up

Export Citation Format

Share Document