tool path generation
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 68)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 5 (4) ◽  
pp. 128
Author(s):  
Matthieu Rauch ◽  
Jean-Yves Hascoet ◽  
Vincent Querard

Wire Arc Additive Manufacturing (WAAM) has emerged over the last decade and is dedicated to the realization of high-dimensional parts in various metallic materials. The usual process implementation consists in associating a high-performance welding generator as heat source, a NC controlled 6 or 8 degrees (for example) of freedom robotic arm as motion system and welding wire as feedstock. WAAM toolpath generation methods, although process specific, can be based on similar approaches developed for other processes, such as machining, to integrate the process data into a consistent technical data environment. This paper proposes a generic multiaxis tool path generation approach for thin wall structures made with WAAM. At first, the current technological and scientific challenges associated to CAD/CAM/CNC data chains for WAAM applications are introduced. The focus is on process planning aspects such as non-planar non-parallel slicing approaches and part orientation into the working space, and these are integrated in the proposed method. The interest of variable torch orientation control for complex shapes is proposed, and then, a new intersection crossing tool path method based on Design For Additive Manufacturing considerations is detailed. Eventually, two industrial use cases are introduced to highlight the interest of this approach for realizing large components.


2021 ◽  
pp. 261-268
Author(s):  
Krishnanand ◽  
Ankit Nayak ◽  
Shivam Soni ◽  
Mohammad Taufik

2021 ◽  
Author(s):  
Marco Buhmann ◽  
Erich Carelli ◽  
Christian Egger ◽  
Klaus Frick

Abstract The increasing demand for machining non-rotational optical surfaces requires capable and flexible cutting tool path generation methods for ultra-precision diamond turning. Furthermore, the recent interest in on-machine metrology and corrective machining require efficient as well as accurate algorithms capable to handle point cloud based surface data. In the present work, a new computation method for the tool path generation is proposed that focuses on three-axes corrective machining. Therefore, it is based on the principle of defining the surface to be machined by a point cloud of certain density, since surface measurement data is usually available as point cloud. Numeric approximation techniques are used to compute the surface normal vectors and calculate the resulting positions of the cutting tool path preserving a uniform radial axis motion for face turning. Investigations are performed in order to quantify the error between the calculated tool path and the exact analytical solution. The error dependencies are analyzed regarding the local surface slope and numerical parameters. Error values below 1nm are achieved. In addition, form deviation results prove the method’s capability for corrective diamond turn machining.


2021 ◽  
Vol 54 (3) ◽  
pp. 461-468
Author(s):  
Tsutomu Sekine ◽  
Kyoko Kameya

This study describes remarkable characteristics of a novel path interval determination in filleted end milling with a tool inclination. CNC milling machine is one of the core technologies in practical manufacturing. Computer-aided technologies have contributed to the technological advancement. Tool path generation in computer-aided manufacturing is really important for CNC milling process. Although there are a lot of parameters treated in tool path generation, path interval is one of the influential factors in considering the balance between manufacturing efficiency and machined surface feature. A path interval determination in filleted end milling commonly entails the intersection problems with mathematical complexities in essence. The related studies have been reported so far, while there has scarcely been a procedure to cope effectively with the complexities. Hence, this study focused on a novel path interval determination proposed in our previous study. After the analytical discussions were made with the computational and experimental results, it was acquired from the explicit evidences that the novel procedure possessed remarkable characteristics contributable for a path interval determination in multi-axis filleted end milling.


Author(s):  
Abd Rahman Z ◽  
Mohamed S B ◽  
Kasim M S ◽  
Ariffïn M K A ◽  
Zulkifli A R

Sign in / Sign up

Export Citation Format

Share Document