path generation
Recently Published Documents


TOTAL DOCUMENTS

1335
(FIVE YEARS 227)

H-INDEX

44
(FIVE YEARS 6)

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Sotirios Spanogiannopoulos ◽  
Yahya Zweiri ◽  
Lakmal Seneviratne

2021 ◽  
Vol 5 (4) ◽  
pp. 128
Author(s):  
Matthieu Rauch ◽  
Jean-Yves Hascoet ◽  
Vincent Querard

Wire Arc Additive Manufacturing (WAAM) has emerged over the last decade and is dedicated to the realization of high-dimensional parts in various metallic materials. The usual process implementation consists in associating a high-performance welding generator as heat source, a NC controlled 6 or 8 degrees (for example) of freedom robotic arm as motion system and welding wire as feedstock. WAAM toolpath generation methods, although process specific, can be based on similar approaches developed for other processes, such as machining, to integrate the process data into a consistent technical data environment. This paper proposes a generic multiaxis tool path generation approach for thin wall structures made with WAAM. At first, the current technological and scientific challenges associated to CAD/CAM/CNC data chains for WAAM applications are introduced. The focus is on process planning aspects such as non-planar non-parallel slicing approaches and part orientation into the working space, and these are integrated in the proposed method. The interest of variable torch orientation control for complex shapes is proposed, and then, a new intersection crossing tool path method based on Design For Additive Manufacturing considerations is detailed. Eventually, two industrial use cases are introduced to highlight the interest of this approach for realizing large components.


2021 ◽  
Vol 10 (4) ◽  
pp. 69
Author(s):  
Omar Banimelhem ◽  
Eyad Taqieddin ◽  
Ibrahim Shatnawi

Recently, the data collection problem in wireless sensor networks (WSNs) using mobile sinks has received much attention. The main challenge in such problems is constructing the path that the mobile sink (MS) will use to collect the data. In this paper, an efficient path generation algorithm for the mobile sink based on principal component analysis (PCA) is proposed. The proposed approach was evaluated using two data collection modes—direct and multihop—and it was compared with another approach called the mobile-sink-based energy-efficient clustering algorithm for wireless sensor networks (MECA). When compared with MECA, simulation results have shown that the proposed approach improves the performance of WSN in terms of the number of live nodes and average remaining energy.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7823
Author(s):  
Hyunchong Cho ◽  
Seungmin Oh ◽  
Yongje Shin ◽  
Euisin Lee

In WSNs, multipath is well-known as a method to improve the reliability of packet delivery by making multiple routes from a source node to a destination node. To improve reliability and load-balancing, it is important to ensure that disjoint characteristics of multipath do not use same nodes during path generation. However, when multipath studies encounter a hole area from which is hard to transmit data packets, they have a problem with breaking the disjoint features of multipath. Although existing studies propose various strategies to bypass hole areas, they have side effects that significantly accelerate energy consumption and packet transmission delay. Therefore, to retain the disjoint feature of multipath, we propose a new scheme that can reduce delay and energy consumption for a node near a hole area using two approaches—global joint avoidance and local avoidance. This scheme uses global joint avoidance to generate a new path centered on a hole area and effectively bypasses the hole area. This scheme also uses local joint avoidance that does not select the same nodes during new path generation using a marking process. In simulations, the proposed scheme has an average 30% improvement in terms of average energy consumption and delay time compared to other studies.


Sign in / Sign up

Export Citation Format

Share Document