Viscosity measurements in semi-solid metal processing: current status and recent developments

Author(s):  
Arumugampillai Megalingam ◽  
Asnul Hadi Bin Ahmad ◽  
Mohd Rashidi Bin Maarof ◽  
Kumarasamy Sudhakar
2014 ◽  
Vol 217-218 ◽  
pp. 481-486 ◽  
Author(s):  
John L. Jorstad

Semi solid metal processing has numerous technical and economic advantages, such as viscous, non-turbulent flow (thus no air entrapment during casting), ability to fill ultra-thin sections (thus reduced part weight), little solidification shrinkage in the die (thus little or no porosity), minimum heat imparted to tooling (thus long tool life) and good response to T-5 aging (thus reduced heat treating costs). Still, SSM has never achieved a prominent position in the field of light metals casting Why? Perhaps the reason was largely the down economy of recent years and SSM will yet emerge with the prominence once expected of it.


2007 ◽  
Vol 436 (1-2) ◽  
pp. 86-90 ◽  
Author(s):  
Sahrooz Nafisi ◽  
Reza Ghomashchi

1995 ◽  
Vol 45 (6) ◽  
pp. 346-354 ◽  
Author(s):  
Akihiko NAMBA

2002 ◽  
Author(s):  
Stephen Midson ◽  
Jay Keist ◽  
Jeff Svare

2008 ◽  
Vol 141-143 ◽  
pp. 1-8 ◽  
Author(s):  
Plato Kapranos

The birth of Semi-Solid Metal Forming (SSM) or as it has now come to be widely known, Thixoforming, is a typical case of development of a technological innovation. Serendipity, stroke of luck, call it what you may, the beginning of SSM is based on an almost accidental discovery by a student carrying out a series of meticulous experiments. On the one hand, some technological failures have contributed to the lack of success across the board for SSM technologies. On the other hand, the ‘long childhood’ of the resulting technology or the process of moving from ‘Innovative Idea to Market' has been largely the result of difficult and in hindsight sometimes wrong managerial decisions, occasional personality clashes, patent rights and at times unavoidable all out business 'warfare'. Of course, hindsight is beautiful but unfortunately it always comes after the event. However, if one looks carefully at some of the notable successes of SSM forming one can discern that the problems were more on the human scale; people failures rather than technology failures. This paper aims to bring out some of these points by outlining the historical development of Thixoforming.


2016 ◽  
Vol 256 ◽  
pp. 9-14 ◽  
Author(s):  
John L. Jorstad

This paper considers the industrial viability of SSM in comparison to other casting processes and the products each process is best able to produce; in such a perspective, SSM has much to offer especially in terms of cost effectiveness for thinner-walled and higher-integrity cast product lines. The ultimate success of SSM will rely on lessons learned from all past thixocacting and rheoocasting developments and experiences. Proposed is new thinking with regard to adaptation of rheocasting to conventional casting equipment; changing the semi-solid processing paramigm is key to ultimate SSM competitiveness and to opening vast new markets for for semi-solid cast products.


2012 ◽  
Vol 192-193 ◽  
pp. 36-46
Author(s):  
W.C. Keung ◽  
Xiang Jie Yang ◽  
Wei Wei Shan

Rheological forming, a semi-solid metal forming process, is one of the manufacturing technologies for near net shape forming. The technology has attracted global academic research interests in recent years. This paper presents the current status of industrial applications of the semi-solid rheological forming technology in the China mainland. A variety of semi-solid slurry preparation techniques have been adopted including electromagnetic stirring and low superheat pouring. Dedicated semi-solid rheological forming equipment developed by the local manufacturers have been highlighted. This paper also makes an attempt to review the crucial factors for successful industrial application of the semi-solid metal forming process.


Sign in / Sign up

Export Citation Format

Share Document