Industrial Applications
Recently Published Documents





2022 ◽  
Vol 23 (2) ◽  
pp. 902
Magdalena Bryś ◽  
Karina Urbańska ◽  
Beata Olas

Genipin is an important monoterpene iridoid compound isolated from Gardenia jasminoides J.Ellis fruits and from Genipa americana fruits, or genipap. It is a precursor of a blue pigment which may be attractive alternative to existing food dyes and it possesses various potential therapeutic properties such as anti-cancer, anti-diabetic and hepatoprotective activity. Biomedical studies also show that genipin may act as a neuroprotective drug. This review describes new aspects of the bioactivity of genipin against various diseases, as well as its toxicity and industrial applications, and presents its potential mechanism of action.

2022 ◽  
Yuling Zhu ◽  
Jifeng Yuan

Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we reported a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97 mM (6.04 g/L) L-Phg, reaching 99.9% conversion. In summary, this work demonstrated a concise four-step enzymatic cascade for the L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.

2022 ◽  
Vol 12 (2) ◽  
pp. 840
Laura S. S. Hulkko ◽  
Tanmay Chaturvedi ◽  
Mette Hedegaard Thomsen

Halophytes are salt-tolerant plants, and they have been utilised as healthy, nutritious vegetables and medicinal herbs. Various studies have shown halophytes to be rich in health-beneficial compounds with antioxidant activity, anti-inflammatory and antimicrobial effects, and cytotoxic properties. Despite their potential, these plants are still underutilised in agriculture and industrial applications. This review includes the state-of-the-art literature concerning the contents of proanthocyanidins (also known as condensed tannins), total phenolic compounds, photosynthetic pigments (chlorophyll and carotenoids), and vitamins in various halophyte biomasses. Various extraction and analytical methods are also considered. The study shows that various species have exhibited potential for use not only as novel food products but also in the production of nutraceuticals and as ingredients for cosmetics and pharmaceuticals.

2022 ◽  
Vol 9 (1) ◽  
pp. 33
Sam McDevitt ◽  
Haley Hernandez ◽  
Jamison Hicks ◽  
Russell Lowell ◽  
Hamza Bentahaikt ◽  

Wearable technologies are emerging as a useful tool with many different applications. While these devices are worn on the human body and can capture numerous data types, this literature review focuses specifically on wearable use for performance enhancement and risk assessment in industrial- and sports-related biomechanical applications. Wearable devices such as exoskeletons, inertial measurement units (IMUs), force sensors, and surface electromyography (EMG) were identified as key technologies that can be used to aid health and safety professionals, ergonomists, and human factors practitioners improve user performance and monitor risk. IMU-based solutions were the most used wearable types in both sectors. Industry largely used biomechanical wearables to assess tasks and risks wholistically, which sports often considered the individual components of movement and performance. Availability, cost, and adoption remain common limitation issues across both sports and industrial applications.

2022 ◽  
Vol 15 (1) ◽  
Sukhyeong Cho ◽  
Yun Seo Lee ◽  
Hanyu Chai ◽  
Sang Eun Lim ◽  
Jeong Geol Na ◽  

Abstract Background Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. Results We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 μM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. Conclusions Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production. Graphical Abstract

2022 ◽  
Vol 72 (4) ◽  
pp. e431
A.E. Edris

Different emulsifiable concentrates containing spearmint essential oil (SEO) were made and evaluated for their potential for giving ethanol-free nanoemulsion spontaneously upon dilution into water. Each one of these formulas had its specific composition regarding the type of excipients, surfactants, surfactant/SEO ratio and surfactant concentration. The results of this evaluation indicated that the chemical composition of SEO has a profound effect on the formation and physical stability of the nanoemulsion. The incorporation of excipients such as long chain triglyceride and propylene glycol into the emulsifiable concentrates at only 1.0% can lead to a stable nanoemulsion that resists Ostwald ripening. A particle size measurement showed that the diameter of SEO in the nanoemulsion was 28.2 nm and its nanostructure was maintained for 3 months. The application of a mixture of binary nonionic food-permitted surfactants enhanced the thermal stability of the nanoemulsion at up to 50 ᵒC. The developed ethanol-free SEO nanoemulsion has promising industrial applications in food and beverage flavoring.

2022 ◽  
Vol 119 (3) ◽  
pp. e2115135119
Bhawakshi Punia ◽  
Srabanti Chaudhury ◽  
Anatoly B. Kolomeisky

Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.

2022 ◽  
Yizhe Zhang ◽  
Jeremy J Agresti ◽  
Yu Zheng ◽  
David A Weitz

A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route for expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient fashion. Briefly, we construct a host bacterial cell to link the RE genotype to the phenotype of β-galactosidase expression based on the bacterial SOS response, and use a high-throughput microfluidic platform to isolate, detect and sort the REs. We employ this strategy to screen for the XbaI gene from constructed libraries of varied sizes. In single round of sorting, a 30-fold target enrichment was obtained within 1 h. The direct screening approach we propose shows potential for efficient search of desirable REs in natural samples compared to the conventional RE-screening method, and is amenable to being adapted to high-throughput screening of other genotoxic targets.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 54
Eugenio Brusa ◽  
Cristiana Delprete ◽  
Lorenzo Giorio ◽  
Luigi Gianpio Di Maggio ◽  
Vittorio Zanella

The remote prognosis and diagnosis of bearings can prevent industrial system failures, but the availability of realistic experimental data, being as close as possible to those detected in industrial applications, is essential to validate the monitoring algorithms. In this paper, an innovative bearing test rig architecture is presented, based on the novel concept of “self-contained box”. The monitoring activity is applicable to a set of four middle-sized bearings simultaneously, while undergoing the independent application of radial and axial loads in order to simulate the behavior of the real industrial machinery. The impact of actions on the platform and supports is mitigated by the so-called “self-contained box” layout, leading to self-balancing of actions within the rotor system. Moreover, the high modularity of this innovative layout allows installing various sized bearings, just changing mechanical adapters. This leads to a reduction of cost as well as of system down-time required to change bearings. The test rig is equipped with suitable instrumentation to develop effective procedures and tools for in- and out-monitoring of the system. An initial characterization of the healthy system is presented.

Sign in / Sign up

Export Citation Format

Share Document