industrial applications
Recently Published Documents


TOTAL DOCUMENTS

12867
(FIVE YEARS 4487)

H-INDEX

122
(FIVE YEARS 24)

2022 ◽  
Vol 156 ◽  
pp. 111926
Author(s):  
Ramita Khanongnuch ◽  
Haris Nalakath Abubackar ◽  
Tugba Keskin ◽  
Mine Gungormusler ◽  
Gozde Duman ◽  
...  

2022 ◽  
Vol 54 (9) ◽  
pp. 1-38
Author(s):  
Frank Siqueira ◽  
Joseph G. Davis

Recent advances in the large-scale adoption of information and communication technologies in manufacturing processes, known as Industry 4.0 or Smart Manufacturing, provide us a window into how the manufacturing sector will evolve in the coming decades. As a result of these initiatives, manufacturing firms have started to integrate a series of emerging technologies into their processes that will change the way products are designed, manufactured, and consumed. This article provides a comprehensive review of how service-oriented computing is being employed to develop the required software infrastructure for Industry 4.0 and identifies the major challenges and research opportunities that ensue. Particular attention is paid to the microservices architecture, which is increasingly recognized as offering a promising approach for developing innovative industrial applications. This literature review is based on the current state of the art on service computing for Industry 4.0 as described in a large corpus of recently published research papers, which helped us to identify and explore a series of challenges and opportunities for the development of this emerging technology frontier, with the goal of facilitating its widespread adoption.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-35
Author(s):  
Abhishek Hazra ◽  
Mainak Adhikari ◽  
Tarachand Amgoth ◽  
Satish Narayana Srirama

In the era of Industry 4.0, the Internet-of-Things (IoT) performs the driving position analogous to the initial industrial metamorphosis. IoT affords the potential to couple machine-to-machine intercommunication and real-time information-gathering within the industry domain. Hence, the enactment of IoT in the industry magnifies effective optimization, authority, and data-driven judgment. However, this field undergoes several interoperable issues, including large numbers of heterogeneous IoT gadgets, tools, software, sensing, and processing components, joining through the Internet, despite the deficiency of communication protocols and standards. Recently, various interoperable protocols, platforms, standards, and technologies are enhanced and altered according to the specifications of the applicability in industrial applications. However, there are no recent survey papers that primarily examine various interoperability issues that Industrial IoT (IIoT) faces. In this review, we investigate the conventional and recent developments of relevant state-of-the-art IIoT technologies, frameworks, and solutions for facilitating interoperability between different IIoT components. We also discuss several interoperable IIoT standards, protocols, and models for digitizing the industrial revolution. Finally, we conclude this survey with an inherent discussion of open challenges and directions for future research.


2022 ◽  
Vol 177 ◽  
pp. 114426
Author(s):  
Samuel Kofi Tulashie ◽  
Daniel Dodoo ◽  
Godfred Appiah ◽  
Francis Kotoka ◽  
Kingsley Enoch Adukpoh

Author(s):  
Xiaoli Zhou ◽  
Zhiqiang Xu ◽  
Yueqiu Li ◽  
Jia He ◽  
Honghui Zhu

Lytic polysaccharide monooxygenases (LPMOs) oxidatively break down the glycosidic bonds of crystalline polysaccharides, significantly improving the saccharification efficiency of recalcitrant biomass, and have broad application prospects in industry. To meet the needs of industrial applications, enzyme engineering is needed to improve the catalytic performance of LPMOs such as enzyme activity and stability. In this study, we engineered the chitin-active CjLPMO10A from Cellvibrio japonicus through a rational disulfide bonds design. Compared with the wild-type, the variant M1 (N78C/H116C) exhibited a 3-fold increase in half-life at 60°C, a 3.5°C higher T5015, and a 7°C rise in the apparent Tm. Furthermore, the resistance of M1 to chemical denaturation was significantly improved. Most importantly, the introduction of the disulfide bond improved the thermal and chemical stability of the enzyme without causing damage to catalytic activity, and M1 showed 1.5 times the specific activity of the wild-type. Our study shows that the stability and activity of LPMOs could be improved simultaneously by selecting suitable engineering sites reasonably, thereby improving the industrial adaptability of the enzymes, which is of great significance for applications.


2022 ◽  
Author(s):  
Yuling Zhu ◽  
Jifeng Yuan

Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we reported a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97 mM (6.04 g/L) L-Phg, reaching 99.9% conversion. In summary, this work demonstrated a concise four-step enzymatic cascade for the L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.


2022 ◽  
Vol 12 (2) ◽  
pp. 840
Author(s):  
Laura S. S. Hulkko ◽  
Tanmay Chaturvedi ◽  
Mette Hedegaard Thomsen

Halophytes are salt-tolerant plants, and they have been utilised as healthy, nutritious vegetables and medicinal herbs. Various studies have shown halophytes to be rich in health-beneficial compounds with antioxidant activity, anti-inflammatory and antimicrobial effects, and cytotoxic properties. Despite their potential, these plants are still underutilised in agriculture and industrial applications. This review includes the state-of-the-art literature concerning the contents of proanthocyanidins (also known as condensed tannins), total phenolic compounds, photosynthetic pigments (chlorophyll and carotenoids), and vitamins in various halophyte biomasses. Various extraction and analytical methods are also considered. The study shows that various species have exhibited potential for use not only as novel food products but also in the production of nutraceuticals and as ingredients for cosmetics and pharmaceuticals.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 73
Author(s):  
Sun Wook Jeong ◽  
Jung Eun Yang ◽  
Yong Jun Choi

Xanthophylls, a yellow pigment belonging to the carotenoid family, have attracted much attention for industrial applications due to their versatile nature. We report the isolation of a homo xanthophyll pigment-producing marine bacterium, identified as the Erythrobacter sp. SDW2 strain, from coastal seawater. The isolated Erythrobacter sp. SDW2 strain can produce 263 ± 12.9 mg/L (89.7 ± 5.4 mg/g dry cell weight) of yellow xanthophyll pigment from 5 g/L of glucose. Moreover, the xanthophyll pigment produced by the SDW2 strain exhibits remarkable antioxidative activities, confirmed by the DPPH (73.4 ± 1.4%) and ABTS (84.9 ± 0.7%) assays. These results suggest that the yellow xanthophyll pigment-producing Erythrobacter sp. SDW2 strain could be a promising industrial microorganism for producing marine-derived bioactive compounds with potential for foods, cosmetics, and pharmaceuticals.


Author(s):  
Han Mingyue ◽  
Yang Luo ◽  
Liuhe Li ◽  
Hua Li ◽  
Ye Xu ◽  
...  

Abstract Investigating the ion dynamics in the emerging bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) discharge is necessary and important for broadening its industrial applications. Recently, an optimized plasma source operating the BP-HiPIMS with an auxiliary anode and a solenoidal coil is proposed to enhance the plasma flux and energy, named as ACBP-HiPIMS (‘A’-anode, ‘C’-coil). In the present work, the temporal evolutions of the ion velocity distribution functions (IVDF) in BP-HiPIMS and ACBP-HiPIMS discharges are measured using a retarding field energy analyser (RFEA). For the BP-HiPIMS discharge, operated at various positive pulse voltages U+, the temporal evolutions of IVDFs illustrate that there are two high-energy peaks, E1 and E2, which are both lower than the applied U+. The ratio of the mean ion energy Ei,mean to the applied U+ is around 0.55-0.6 at various U+. In ACBP-HiPIMS discharge, the IVDF evolution shows three distinguishable stages which has the similar evolution trend with the floating potential Vf on the RFEA frontplate: (i) the stable stage with two high-energy peaks (E2 and E3 with energy respectively lower and higher than the applied U+ amplitude) when the floating potential Vf is close to the applied positive pulse voltage; (ii) the transition stage with low-energy populations when the Vf drops by ~20 V within ~10 μs; and (iii) the oscillation stage with alternating E2 and E3 populations and ever-present E1 population when the Vf slighly descreases unitl to the end of positive pulse. The comparison of IVDFs in BP-HiPIMS and ACBP-HiPIMS suggests that both the mean ion energy and high-energy ion flux have been effectively improved in ACBP-HiPIMS discharge. The formation of floating potential drop is explored using the Langmuir probe which may be attributed to the establishment of anode double layer structure.


Sign in / Sign up

Export Citation Format

Share Document