scholarly journals Deterministic sampling from uniform distributions with Sierpiński space-filling curves

Author(s):  
Hime Aguiar e Oliveira
Author(s):  
Hime Aguiar e O. Jr

In this paper the problem of sampling from uniform probability distributions is approached by means of space-filling curves (SFCs), a topological concept that has found a number of important applications in recent years. Departing from the theoretical fact that they are surjective but not necessarilly injective, the investigation focused upon the structure of the distributions obtained when their domain is swept in a uniform and discrete manner, and the corresponding values used to build histograms, that are approximations of their true PDFs. This work concentrates on the real interval [0,1], and the Sierpinski space-filling curve was chosen because of its favorable computational properties. In order to validate the results, the Kullback-Leibler distance is used when comparing the obtained distributions in several levels of granularity with other already established sampling methods. In truth, the generation of uniform random numbers is a deterministic simulation of randomness using numerical operations. In this fashion, sequences resulting from this sort of process are not truly random.


Author(s):  
Hime Oliveira

This work addresses the problem of sampling from Gaussian probability distributions by means of uniform samples obtained deterministically and directly from space-filling curves (SFCs), a purely topological concept. To that end, the well-known inverse cumulative distribution function method is used, with the help of the probit function,which is the inverse of the cumulative distribution function of the standard normal distribution. Mainly due to the central limit theorem, the Gaussian distribution plays a fundamental role in probability theory and related areas, and that is why it has been chosen to be studied in the present paper. Numerical distributions (histograms) obtained with the proposed method, and in several levels of granularity, are compared to the theoretical normal PDF, along with other already established sampling methods, all using the cited probit function. Final results are validated with the Kullback-Leibler and two other divergence measures, and it will be possible to draw conclusions about the adequacy of the presented paradigm. As is amply known, the generation of uniform random numbers is a deterministic simulation of randomness using numerical operations. That said, sequences resulting from this kind of procedure are not truly random. Even so, and to be coherent with the literature, the expression ”random number” will be used along the text to mean ”pseudo-random number”.


2020 ◽  
Vol 10 (1) ◽  
pp. 65-70
Author(s):  
Andrei Gorchakov ◽  
Vyacheslav Mozolenko

AbstractAny real continuous bounded function of many variables is representable as a superposition of functions of one variable and addition. Depending on the type of superposition, the requirements for the functions of one variable differ. The article investigated one of the options for the numerical implementation of such a superposition proposed by Sprecher. The superposition was presented as a three-layer Feedforward neural network, while the functions of the first’s layer were considered as a generator of space-filling curves (Peano curves). The resulting neural network was applied to the problems of direct kinematics of parallel manipulators.


2010 ◽  
Vol 50 (2) ◽  
pp. 370-386 ◽  
Author(s):  
P. J. Couch ◽  
B. D. Daniel ◽  
Timothy H. McNicholl

Author(s):  
Paulo Costa ◽  
João Barroso ◽  
Hugo Fernandes ◽  
Leontios J Hadjileontiadis

2009 ◽  
pp. 2674-2675
Author(s):  
Mohamed F. Mokbel ◽  
Walid G. Aref

Author(s):  
Panagiotis Tsinganos ◽  
Bruno Cornelis ◽  
Jan Cornelis ◽  
Bart Jansen ◽  
Athanassios Skodras

Over the past few years, Deep learning (DL) has revolutionized the field of data analysis. Not only are the algorithmic paradigms changed, but also the performance in various classification and prediction tasks has been significantly improved with respect to the state-of-the-art, especially in the area of computer vision. The progress made in computer vision has produced a spillover in many other domains, such as biomedical engineering. Some recent works are directed towards surface electromyography (sEMG) based hand gesture recognition, often addressed as an image classification problem and solved using tools such as Convolutional Neural Networks (CNN). This paper extends our previous work on the application of the Hilbert space-filling curve for the generation of image representations from multi-electrode sEMG signals, by investigating how the Hilbert curve compares to the Peano- and Z-order space-filling curves. The proposed space-filling mapping methods are evaluated on a variety of network architectures and in some cases yield a classification improvement of at least 3%, when used to structure the inputs before feeding them into the original network architectures.


Sign in / Sign up

Export Citation Format

Share Document