scholarly journals Boundary Regularity for Solutions to the Linearized Monge–Ampère Equations

2013 ◽  
Vol 210 (3) ◽  
pp. 813-836 ◽  
Author(s):  
N. Q. Le ◽  
O. Savin
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Nam Q. Le

<p style='text-indent:20px;'>By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as <inline-formula><tex-math id="M1">\begin{document}$ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $\end{document}</tex-math></inline-formula> with zero boundary data, have unexpected degenerate nature.</p>


2008 ◽  
Vol 167 (3) ◽  
pp. 993-1028 ◽  
Author(s):  
Neil Trudinger ◽  
Xu-Jia Wang

2018 ◽  
Vol 264 (11) ◽  
pp. 6873-6890 ◽  
Author(s):  
Huaiyu Jian ◽  
You Li

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2019 ◽  
Vol 114 (3) ◽  
pp. 343-352
Author(s):  
Norm Levenberg ◽  
Sione Ma’u
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


Sign in / Sign up

Export Citation Format

Share Document