The Rubin?Stark Conjecture for imaginary abelian fields of odd prime power conductor

2004 ◽  
Vol 330 (2) ◽  
Author(s):  
Cristian D. Popescu
2013 ◽  
Vol 357 (3) ◽  
pp. 1071-1089 ◽  
Author(s):  
Eva Bayer-Fluckiger ◽  
Piotr Maciak

1995 ◽  
Vol 52 (1) ◽  
pp. 85-97 ◽  
Author(s):  
J.W. Sands ◽  
W. Schwarz
Keyword(s):  

1977 ◽  
Vol 24 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Edward Spence

AbstractIn this paper the following result is proved. Suppose there exists a C-matrix of order n + 1. Then if n≡1 (mod 4) there exists a Hadamard matrix of order 2nr(n + 1), while if n≡3 (mod 4) there exists a Hadamard matrix of order nr(n + 1) for all r ≧0. If n≡1 (mod 4) is a prime power, the method is adapted to prove the existence of a Hadamard matrix of the Williamson type, of order 2nr(n + 1), for all r ≧0.


2003 ◽  
Vol 67 (1) ◽  
pp. 115-119
Author(s):  
Alireza Abdollahi

Let c ≥ 0, d ≥ 2 be integers and be the variety of groups in which every d-generator subgroup is nilpotent of class at most c. N.D. Gupta asked for what values of c and d is it true that is locally nilpotent? We prove that if c ≤ 2d + 2d−1 − 3 then the variety is locally nilpotent and we reduce the question of Gupta about the periodic groups in to the prime power exponent groups in this variety.


2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


1980 ◽  
Vol 35 (1) ◽  
pp. 203-209 ◽  
Author(s):  
H. Finken ◽  
J. Neub�ser ◽  
W. Plesken

1987 ◽  
Vol 30 (1) ◽  
pp. 143-151 ◽  
Author(s):  
David Singerman

The modular group PSL(2, ℤ), which is isomorphic to a free product of a cyclicgroupof order 2 and a cyclic group of order 3, has many important homomorphic images. Inparticular, Macbeath [7] showed that PSL(2, q) is an image of the modular group if q ≠ 9. (Here, as usual, q is a prime power.) The extended modular group PGL(2, ℤ) contains PSL{2, ℤ) with index 2. It has a presentationthe subgroup PSL(2, ℤ) being generated by UV and VW.


Sign in / Sign up

Export Citation Format

Share Document