scholarly journals A diagrammatic approach to the AJ Conjecture

2020 ◽  
Vol 378 (1-2) ◽  
pp. 447-484
Author(s):  
Renaud Detcherry ◽  
Stavros Garoufalidis

Abstract The AJ Conjecture relates a quantum invariant, a minimal order recursion for the colored Jones polynomial of a knot (known as the $$\hat{A}$$ A ^ polynomial), with a classical invariant, namely the defining polynomial A of the $${\mathrm {PSL}_2(\mathbb {C})}$$ PSL 2 ( C ) character variety of a knot. More precisely, the AJ Conjecture asserts that the set of irreducible factors of the $$\hat{A}$$ A ^ -polynomial (after we set $$q=1$$ q = 1 , and excluding those of L-degree zero) coincides with those of the A-polynomial. In this paper, we introduce a version of the $$\hat{A}$$ A ^ -polynomial that depends on a planar diagram of a knot (that conjecturally agrees with the $$\hat{A}$$ A ^ -polynomial) and we prove that it satisfies one direction of the AJ Conjecture. Our proof uses the octahedral decomposition of a knot complement obtained from a planar projection of a knot, the R-matrix state sum formula for the colored Jones polynomial, and its certificate.

2020 ◽  
Vol 31 (07) ◽  
pp. 2050056 ◽  
Author(s):  
Stavros Garoufalidis ◽  
Christine Ruey Shan Lee ◽  
Roland van der Veen

The slope conjecture relates the degree of the colored Jones polynomial of a knot to boundary slopes of essential surfaces. We develop a general approach that matches a state-sum formula for the colored Jones polynomial with the parameters that describe surfaces in the complement. We apply this to Montesinos knots proving the slope conjecture for Montesinos knots, with some restrictions.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950050
Author(s):  
Christine Ruey Shan Lee

It is known that the colored Jones polynomial of a [Formula: see text]-adequate link has a well-defined tail consisting of stable coefficients, and that the coefficients of the tail carry geometric and topological information on the [Formula: see text]-adequate link complement. We show that a power series similar to the tail of the colored Jones polynomial for [Formula: see text]-adequate links can be defined for all links, and that it is trivial if and only if the link is non [Formula: see text]-adequate.


2010 ◽  
Vol 19 (12) ◽  
pp. 1571-1595 ◽  
Author(s):  
STAVROS GAROUFALIDIS ◽  
XINYU SUN

The purpose of the paper is two-fold: to introduce a multivariable creative telescoping method, and to apply it in a problem of Quantum Topology: namely the computation of the non-commutative A-polynomial of twist knots. Our multivariable creative telescoping method allows us to compute linear recursions for sums of the form [Formula: see text] given a recursion relation for [Formula: see text] and the hypergeometric kernel c(n, k). As an application of our method, we explicitly compute the non-commutative A-polynomial for twist knots with -15 and 15 crossings. The non-commutative A-polynomial of a knot encodes the monic, linear, minimal order q-difference equation satisfied by the sequence of colored Jones polynomials of the knot. Its specialization to q = 1 is conjectured to be the better-known A-polynomial of a knot, which encodes important information about the geometry and topology of the knot complement. Unlike the case of the Jones polynomial, which is easily computable for knots with 50 crossings, the A-polynomial is harder to compute and already unknown for some knots with 12 crossings.


2004 ◽  
Vol 15 (09) ◽  
pp. 959-965 ◽  
Author(s):  
KAZUHIRO HIKAMI

We prove that the N-colored Jones polynomial for the torus knot [Formula: see text] satisfies the second order difference equation, which reduces to the first order difference equation for a case of [Formula: see text]. We show that the A-polynomial of the torus knot can be derived from the difference equation. Also constructed is a q-hypergeometric type expression of the colored Jones polynomial for [Formula: see text].


2017 ◽  
Vol 26 (03) ◽  
pp. 1741002 ◽  
Author(s):  
Mustafa Hajij

Using the colored Kauffman skein relation, we study the highest and lowest [Formula: see text] coefficients of the [Formula: see text] unreduced colored Jones polynomial of alternating links. This gives a natural extension of a result by Kauffman in regard with the Jones polynomial of alternating links and its highest and lowest coefficients. We also use our techniques to give a new and natural proof for the existence of the tail of the colored Jones polynomial for alternating links.


2013 ◽  
Vol 13 (1) ◽  
pp. 375-408
Author(s):  
Xuanting Cai ◽  
Patrick M Gilmer

2014 ◽  
Vol 25 (08) ◽  
pp. 1450074
Author(s):  
S. Suzuki

Bing doubling is a satellite operation on links which replaces a knot component with a 2-component link in a certain way. In this paper we give a formula for the reduced colored Jones polynomial of a Bing double in terms of that of the companion. Using this formula we derive a divisibility property of the unified Witten–Reshetikhin–Turaev invariant of integral homology spheres obtained by ±1-surgery along Bing doubles of knots. This result is applied to the Witten–Reshetikhin–Turaev invariant and the Ohtsuki series of these integral homology spheres.


Sign in / Sign up

Export Citation Format

Share Document