scholarly journals Reaction-diffusion systems with supercritical nonlinearities revisited

Author(s):  
Anna Kostianko ◽  
Chunyou Sun ◽  
Sergey Zelik

AbstractWe give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standard monotonicity assumption. We pay the main attention to the supercritical case, where the nonlinearity is not subordinated to the linear part of the equation trying to put as small as possible amount of extra restrictions on this nonlinearity. The properties of such systems in the supercritical case may be very different in comparison with the standard case of subordinated nonlinearities. We examine the global existence and uniqueness of weak and strong solutions, various types of smoothing properties, asymptotic compactness and the existence of global and exponential attractors.

2019 ◽  
Vol 84 (5) ◽  
pp. 974-1000
Author(s):  
Guillaume Cantin ◽  
M A Aziz-Alaoui ◽  
Nathalie Verdière

Abstract This paper is devoted to the analysis of the asymptotic behaviour of a complex network of reaction–diffusion systems for a geographical model, which was proposed recently, in order to better understand behavioural reactions of individuals facing a catastrophic event. After stating sufficient conditions for the problem to admit a positively invariant region, we establish energy estimates and prove the existence of a family of exponential attractors. We explore the influence of the size of the network on the nature of those attractors, in correspondence with the geographical background. Numerical simulations illustrate our theoretical results and show the various possible dynamics of the problem.


1994 ◽  
Vol 366 ◽  
Author(s):  
Haim Taitelbaum ◽  
Baruch Vilensky ◽  
Yong-Eun Lee Koo ◽  
Andrew Yen ◽  
Anna Lin ◽  
...  

ABSTRACTCharacteristics of the A + B → C reaction-diffusion system with initially separated components are studied theoretically and experimentally. When the reaction is slow, the two species will mix before reacting. This leads to a series of crossovers from a rich initial behavior to an asymptotic time behavior. The crossovers depend on the system parameters, such as the diffusion coefficients and initial densities of the two species. In this paper we review our recent studies on this system. We elaborate on a theoretical study of momentum effects, and then focus on theoretical explanations of two experimental phenomena: 1) Non-universal and non-monotonic motion of the reaction front center. The latter occurs when one of the reactants has larger diffusion coefficient but smaller initial density. 2) Existence of more than one front. This occurs when two different transformations of the same reactant (on one of the sides of the system), react with the reactant on the other side with a different reaction constant - the majority slowly, but the minority much faster.


1989 ◽  
Vol 112 (1-2) ◽  
pp. 135-143 ◽  
Author(s):  
J. Esquinas ◽  
J. López-Gómez

SynopsisIn some cases, a reaction–diffusion system can be transformed into an abstract equation where the linear part is given by a polynomial of a linear operator, say Multiparameter bifurcation for this equation is considered as the coefficients of the operator polynomial in are varied.


Sign in / Sign up

Export Citation Format

Share Document