scholarly journals On the monodromy of the deformed cubic oscillator

Author(s):  
Tom Bridgeland ◽  
Davide Masoero

AbstractWe study a second-order linear differential equation known as the deformed cubic oscillator, whose isomonodromic deformations are controlled by the first Painlevé equation. We use the generalised monodromy map for this equation to give solutions to the Riemann-Hilbert problems of (Bridgeland in Invent Math 216(1):69–124, 2019) arising from the Donaldson-Thomas theory of the A$$_2$$ 2 quiver. These are the first known solutions to such problems beyond the uncoupled case. The appendix by Davide Masoero contains a WKB analysis of the asymptotics of the monodromy map.

1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


Sign in / Sign up

Export Citation Format

Share Document