scholarly journals The finite element approximation of a coupled reaction-diffusion problem with non-Lipschitz nonlinearities

1995 ◽  
Vol 71 (2) ◽  
pp. 135-157
Author(s):  
John W. Barrett ◽  
Patrick A. Wood
2016 ◽  
Vol 6 (4) ◽  
pp. 434-447 ◽  
Author(s):  
M. Mbehou ◽  
R. Maritz ◽  
P.M.D. Tchepmo

AbstractThis article is devoted to the study of the finite element approximation for a nonlocal nonlinear parabolic problem. Using a linearised Crank-Nicolson Galerkin finite element method for a nonlinear reaction-diffusion equation, we establish the convergence and error bound for the fully discrete scheme. Moreover, important results on exponential decay and vanishing of the solutions in finite time are presented. Finally, some numerical simulations are presented to illustrate our theoretical analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3165
Author(s):  
Camille Negrello ◽  
Pierre Gosselet ◽  
Christian Rey

We consider the finite element approximation of the solution to elliptic partial differential equations such as the ones encountered in (quasi)-static mechanics, in transient mechanics with implicit time integration, or in thermal diffusion. We propose a new nonlinear version of preconditioning, dedicated to nonlinear substructured and condensed formulations with dual approach, i.e., nonlinear analogues to the Finite Element Tearing and Interconnecting (FETI) solver. By increasing the importance of local nonlinear operations, this new technique reduces communications between processors throughout the parallel solving process. Moreover, the tangent systems produced at each step still have the exact shape of classically preconditioned linear FETI problems, which makes the tractability of the implementation barely modified. The efficiency of this new preconditioner is illustrated on two academic test cases, namely a water diffusion problem and a nonlinear thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document