nonlinear version
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 12145
Author(s):  
Jun Huang ◽  
Qian Xu ◽  
Xiwen Qu ◽  
Yaojin Lin ◽  
Xiao Zheng

In multi-label learning, each object is represented by a single instance and is associated with more than one class labels, where the labels might be correlated with each other. As we all know, exploiting label correlations can definitely improve the performance of a multi-label classification model. Existing methods mainly model label correlations in an indirect way, i.e., adding extra constraints on the coefficients or outputs of a model based on a pre-learned label correlation graph. Meanwhile, the high dimension of the feature space also poses great challenges to multi-label learning, such as high time and memory costs. To solve the above mentioned issues, in this paper, we propose a new approach for Multi-Label Learning by Correlation Embedding, namely MLLCE, where the feature space dimension reduction and the multi-label classification are integrated into a unified framework. Specifically, we project the original high-dimensional feature space to a low-dimensional latent space by a mapping matrix. To model label correlation, we learn an embedding matrix from the pre-defined label correlation graph by graph embedding. Then, we construct a multi-label classifier from the low-dimensional latent feature space to the label space, where the embedding matrix is utilized as the model coefficients. Finally, we extend the proposed method MLLCE to the nonlinear version, i.e., NL-MLLCE. The comparison experiment with the state-of-the-art approaches shows that the proposed method MLLCE has a competitive performance in multi-label learning.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3165
Author(s):  
Camille Negrello ◽  
Pierre Gosselet ◽  
Christian Rey

We consider the finite element approximation of the solution to elliptic partial differential equations such as the ones encountered in (quasi)-static mechanics, in transient mechanics with implicit time integration, or in thermal diffusion. We propose a new nonlinear version of preconditioning, dedicated to nonlinear substructured and condensed formulations with dual approach, i.e., nonlinear analogues to the Finite Element Tearing and Interconnecting (FETI) solver. By increasing the importance of local nonlinear operations, this new technique reduces communications between processors throughout the parallel solving process. Moreover, the tangent systems produced at each step still have the exact shape of classically preconditioned linear FETI problems, which makes the tractability of the implementation barely modified. The efficiency of this new preconditioner is illustrated on two academic test cases, namely a water diffusion problem and a nonlinear thermal behavior.


2021 ◽  
Vol 24 (4) ◽  
pp. 966-1002
Author(s):  
Félix del Teso ◽  
David Gómez-Castro ◽  
Juan Luis Vázquez

Abstract We introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonlinearity with the linear heat semigroup. The second adapts the nonlinearity to the Caffarelli-Silvestre linear extension technique. The third one is the corresponding nonlinear version of the Balakrishnan formula. We also discuss the correct choice of the constant of the fractional p-Laplace operator in order to have continuous dependence as p → 2 and s → 0+, 1−. A number of consequences and proposals are derived. Thus, we propose a natural spectral-type operator in domains, different from the standard restriction of the fractional p-Laplace operator acting on the whole space. We also propose numerical schemes, a new definition of the fractional p-Laplacian on manifolds, as well as alternative characterizations of the W s, p (ℝ n ) seminorms.


2021 ◽  
pp. 1-16
Author(s):  
Oana Iosifescu ◽  
Christian Licht

By using a nonlinear version of Trotter’s theory of approximation of semi-groups acting on variable Hilbert spaces, we propose an asymptotic modeling for the behavior of a linearly elastic plate in bilateral contact with a rigid body along part of its lateral boundary with Norton or Tresca friction.


2021 ◽  
pp. 2150040
Author(s):  
Vukašin Stojisavljević ◽  
Jun Zhang

We use persistence modules and their corresponding barcodes to quantitatively distinguish between different fiberwise star-shaped domains in the cotangent bundle of a fixed manifold. The distance between two fiberwise star-shaped domains is measured by a nonlinear version of the classical Banach–Mazur distance, called symplectic Banach–Mazur distance and denoted by [Formula: see text] The relevant persistence modules come from filtered symplectic homology and are stable with respect to [Formula: see text] Our main focus is on the space of unit codisc bundles of orientable surfaces of positive genus, equipped with Riemannian metrics. We consider some questions about large-scale geometry of this space and in particular we give a construction of a quasi-isometric embedding of [Formula: see text] into this space for all [Formula: see text] On the other hand, in the case of domains in [Formula: see text], we can show that the corresponding metric space has infinite diameter. Finally, we discuss the existence of closed geodesics whose energies can be controlled.


Author(s):  
Sakina Othmani ◽  
Nasser-eddine Tatar ◽  
Ammar Khemmoudj

In this paper, we examine a Bidirectional Associative Memory neural network model with distributed delays. Using a result due to Cid [4], we were able to prove an exponential stability result in the case when the standard Lipschitz continuity condition is violated. Indeed, we deal with activation functions which may not be Lipschitz continuous. Therefore, the standard Halanay inequality is not applicable. We will use a nonlinear version of this inequality. At the end, the obtained differential inequality which should imply the exponential stability appears "state dependent". That is the usual constant depends in this case on the state itself. This adds some difficulties which we overcome by a suitable argument.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 452
Author(s):  
Sayed Abdel-Khalek ◽  
Kamal Berrada ◽  
Eied M. Khalil ◽  
Hichem Eleuch ◽  
Abdel-Shafy F. Obada ◽  
...  

In this work, we examine a nonlinear version of the Tavis–Cummings model for two two-level atoms interacting with a single-mode field within a cavity in the context of power-law potentials. We consider the effect of the particle position that depends on the velocity and acceleration, and the coupling parameter is supposed to be time-dependent. We examine the effect of velocity and acceleration on the dynamical behavior of some quantumness measures, namely as von Neumann entropy, concurrence and Mandel parameter. We have found that the entanglement of subsystem states and the photon statistics are largely dependent on the choice of the qubit motion and power-law exponent. The obtained results present potential applications for quantum information and optics with optimal conditions.


2021 ◽  
pp. 1-12
Author(s):  
LIU YANG ◽  
YUKIHIKO NAKATA

For some diseases, it is recognized that immunity acquired by natural infection and vaccination subsequently wanes. As such, immunity provides temporal protection to recovered individuals from an infection. An immune period is extended owing to boosting of immunity by asymptomatic re-exposure to an infection. An individual’s immune status plays an important role in the spread of infectious diseases at the population level. We study an age-dependent epidemic model formulated as a nonlinear version of the Aron epidemic model, which incorporates boosting of immunity by a system of delay equations and study the existence of an endemic equilibrium to observe whether boosting of immunity changes the qualitative property of the existence of the equilibrium. We establish a sufficient condition related to the strength of disease transmission from subclinical and clinical infective populations, for the unique existence of an endemic equilibrium.


Sign in / Sign up

Export Citation Format

Share Document