reaction diffusion equation
Recently Published Documents


TOTAL DOCUMENTS

1018
(FIVE YEARS 291)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Raul Abreu de Assis ◽  
Mazilio Coronel Malavazi ◽  
Rubens Pazim ◽  
Gustavo Cannale ◽  
Moiseis Cecconello ◽  
...  

Abstract In the analysis of anthropogenic impact on the environment arises the question of whether the shapes of preserved habitat fragments play an important role in the conservation of wild species. In this work we use a very simple mathematical model based on a reaction-diffusion equation to analyze the effects of geometric shape and area on the permanence of populations in habitat fragments. Our results indicate that a dimensionless quantity calculated from a combination of biological variables is the main component that determines if the species survives in the preserved fragment and whether its geometric shape is important. We provide a methodology to calculate critical area sizes for which population size is most affected by fragment shape. The calculation is based on four quantitative variables: maximum per capita reproduction rate, per capita mortality rate outside the fragment, carrying capacity in the conserved environment and mobility in the disturbed environment. The methodology is illustrated by a preliminary study, in which the model is used to estimate threshold area sizes for habitat fragments for the threatened species Sapajus xanthosternos .


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuki Kaneko ◽  
Hiroshi Matsuzawa ◽  
Yoshio Yamada

<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ u_t = \Delta u+f(u) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ t&gt;0,\ |x|&lt;h(t) $\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id="M5">\begin{document}$ f(0) = 0 $\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id="M6">\begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id="M7">\begin{document}$ t\to\infty $\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Nicholas Bessonov ◽  
Gennady Bocharov ◽  
Vitaly Volpert

The paper is devoted to a nonlocal reaction-diffusion equation describing the development of viral infection in tissue, taking into account virus distribution in the space of genotypes, the antiviral immune response, and natural genotype-dependent virus death. It is shown that infection propagates as a reaction-diffusion wave. In some particular cases, the 2D problem can be reduced to a 1D problem by separation of variables, allowing for proof of wave existence and stability. In general, this reduction provides an approximation of the 2D problem by a 1D problem. The analysis of the reduced problem allows us to determine how viral load and virulence depend on genotype distribution, the strength of the immune response, and the level of immunity.


2021 ◽  
Author(s):  
Weiguo Rui

Abstract It is well known that methods for solving fractional-order PDEs are grossly inadequate compared with integer-order PDEs. In this paper, a new approach which combined with the separation method of semi-fixed variables and dynamical system method is introduced. As example, a time-fractional reaction-diffusion equation with higher-order terms is studied under the different kinds of fractional-order differential operators. In different parametric regions, phase portraits of systems which derived from the reaction-diffusion equation are presented. Existence and dynamic properties of solutions of this nonlinear time-fractional models are investigated. In some special parametric conditions, some exact solutions of this time-fractional models are obtained. The dynamical properties of some exact solutions are discussed and the graphs of them are illustrated.PACS: 02.30.Jr; 02.30.Oz; 02.70.-c; 02.70.Mv; 02.90.+p; 04.20.Jb; 05.10.-a


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3248
Author(s):  
Linfei Shi ◽  
Wenguang Cheng ◽  
Jinjin Mao ◽  
Tianzhou Xu

In this paper, we investigate a reaction–diffusion equation with a Caputo fractional derivative in time and with boundary conditions. According to the principle of contraction mapping, we first prove the existence and uniqueness of local solutions. Then, under some conditions of the initial data, we obtain two sufficient conditions for the blow-up of the solutions in finite time. Moreover, the existence of global solutions is studied when the initial data is small enough. Finally, the long-time behavior of bounded solutions is analyzed.


2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Hongyong Cui ◽  
Arthur C. Cunha ◽  
José A. Langa

AbstractFinite-dimensional attractors play an important role in finite-dimensional reduction of PDEs in mathematical modelization and numerical simulations. For non-autonomous random dynamical systems, Cui and Langa (J Differ Equ, 263:1225–1268, 2017) developed a random uniform attractor as a minimal compact random set which provides a certain description of the forward dynamics of the underlying system by forward attraction in probability. In this paper, we study the conditions that ensure a random uniform attractor to have finite fractal dimension. Two main criteria are given, one by a smoothing property and the other by a squeezing property of the system, and neither of the two implies the other. The upper bound of the fractal dimension consists of two parts: the fractal dimension of the symbol space plus a number arising from the smoothing/squeezing property. As an illustrative application, the random uniform attractor of a stochastic reaction–diffusion equation with scalar additive noise is studied, for which the finite-dimensionality in $$L^2$$ L 2 is established by the squeezing approach and that in $$H_0^1$$ H 0 1 by the smoothing framework. In addition, a random absorbing set that absorbs itself after a deterministic period of time is also constructed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
A. K. Omran ◽  
M. A. Zaky ◽  
A. S. Hendy ◽  
V. G. Pimenov

In this paper, we construct and analyze a linearized finite difference/Galerkin–Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model are taken as 0 < β 0 < β 1 < β 2 < ⋯ < β m < 1 . The problem is first approximated by the L 1 difference method on the temporal direction, and then, the Galerkin–Legendre spectral method is applied on the spatial discretization. Armed by an appropriate form of discrete fractional Grönwall inequalities, the stability and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method is stable and has a convergent order of 2 − β m in time and an exponential rate of convergence in space. We finally provide some numerical experiments to show the efficacy of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document