scholarly journals Correction to: Dirichlet Form Approach to Infinite-Dimensional Wiener Processes with Singular Interactions

Author(s):  
Hirofumi Osada
2008 ◽  
Vol 51 (2) ◽  
pp. 337-362 ◽  
Author(s):  
Torben Fattler ◽  
Martin Grothaus

AbstractWe give a Dirichlet form approach for the construction and analysis of elliptic diffusions in $\bar{\varOmega}\subset\mathbb{R}^n$ with reflecting boundary condition. The problem is formulated in an $L^2$-setting with respect to a reference measure $\mu$ on $\bar{\varOmega}$ having an integrable, $\mathrm{d} x$-almost everywhere (a.e.) positive density $\varrho$ with respect to the Lebesgue measure. The symmetric Dirichlet forms $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ we consider are the closure of the symmetric bilinear forms\begin{gather*} \mathcal{E}^{\varrho,a}(f,g)=\sum_{i,j=1}^n\int_{\varOmega}\partial_ifa_{ij} \partial_jg\,\mathrm{d}\mu,\quad f,g\in\mathcal{D}, \\ \mathcal{D}=\{f\in C(\bar{\varOmega})\mid f\in W^{1,1}_{\mathrm{loc}}(\varOmega),\ \mathcal{E}^{\varrho,a}(f,f)\lt\infty\}, \end{gather*}in $L^2(\bar{\varOmega},\mu)$, where $a$ is a symmetric, elliptic, $n\times n$-matrix-valued measurable function on $\bar{\varOmega}$. Assuming that $\varOmega$ is an open, relatively compact set with boundary $\partial\varOmega$ of Lebesgue measure zero and that $\varrho$ satisfies the Hamza condition, we can show that $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ is a local, quasi-regular Dirichlet form. Hence, it has an associated self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and diffusion process $\bm{M}^{\varrho,a}$ (i.e. an associated strong Markov process with continuous sample paths). Furthermore, since $1\in D(\mathcal{E}^{\varrho,a})$ (due to the Neumann boundary condition) and $\mathcal{E}^{\varrho,a}(1,1)=0$, we obtain a conservative process $\bm{M}^{\varrho,a}$ (i.e. $\bm{M}^{\varrho,a}$ has infinite lifetime). Additionally, assuming that $\sqrt{\varrho}\in W^{1,2}(\varOmega)\cap C(\bar{\varOmega})$ or that $\varrho$ is bounded, $\varOmega$ is convex and $\{\varrho=0\}$ has codimension at least 2, we can show that the set $\{\varrho=0\}$ has $\mathcal{E}^{\varrho,a}$-capacity zero. Therefore, in this case we can even construct an associated conservative diffusion process in $\{\varrho>0\}$. This is essential for our application to continuous $N$-particle systems with singular interactions. Note that for the construction of the self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and the Markov process $\bm{M}^{\varrho,a}$ we do not need to assume any differentiability condition on $\varrho$ and $a$. We obtain the following explicit representation of the generator for $\sqrt{\varrho}\in W^{1,2}(\varOmega)$ and $a\in W^{1,\infty}(\varOmega)$:$$ L^{\varrho,a}=\sum_{i,j=1}^n\partial_i(a_{ij}\partial_j)+\partial_i(\log\varrho)a_{ij}\partial_j. $$Note that the drift term can be singular, because we allow $\varrho$ to be zero on a set of Lebesgue measure zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue measure.


2019 ◽  
Vol 25 ◽  
pp. 71
Author(s):  
Viorel Barbu

One introduces a new concept of generalized solution for nonlinear infinite dimensional stochastic differential equations of subgradient type driven by linear multiplicative Wiener processes. This is defined as solution of a stochastic convex optimization problem derived from the Brezis-Ekeland variational principle. Under specific conditions on nonlinearity, one proves the existence and uniqueness of a variational solution which is also a strong solution in some significant situations. Applications to the existence of stochastic total variational flow and to stochastic parabolic equations with mild nonlinearity are given.


2017 ◽  
Vol 127 (12) ◽  
pp. 4053-4082 ◽  
Author(s):  
Giacomo Zanella ◽  
Mylène Bédard ◽  
Wilfrid S. Kendall

Author(s):  
S. ALBEVERIO ◽  
Ya. BELOPOLSKAYA ◽  
M. FELLER

We construct a Dirichlet form associated with the infinite dimensional Lévy–Laplace operator. We show that there exists a natural connection between this form and a Markov process.


2012 ◽  
Vol 55 (2) ◽  
pp. 403-427 ◽  
Author(s):  
Florian Conrad ◽  
Martin Grothaus ◽  
Janna Lierl ◽  
Olaf Wittich

AbstractThe method of deriving scaling limits using Dirichlet-form techniques has already been successfully applied to a number of infinite-dimensional problems. However, extracting the key tools from these papers is a rather difficult task for non-experts. This paper meets the need for a simple presentation of the method by applying it to a basic example, namely the convergence of Brownian motions with potentials given by n multiplied by the Dirac delta at 0 to Brownian motion with absorption at 0.


2021 ◽  
Author(s):  
István Gyöngy ◽  
Sizhou Wu

AbstractA well-known Itô formula for finite-dimensional processes, given in terms of stochastic integrals with respect to Wiener processes and Poisson random measures, is revisited and is revised. The revised formula, which corresponds to the classical Itô formula for semimartingales with jumps, is then used to obtain a generalisation of an important infinite-dimensional Itô formula for continuous semimartingales from Krylov (Probab Theory Relat Fields 147:583–605, 2010) to a class of $$L_p$$ L p -valued jump processes. This generalisation is motivated by applications in the theory of stochastic PDEs.


Sign in / Sign up

Export Citation Format

Share Document