nonlinear stochastic differential equations
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 17 ◽  
pp. 65-68
Author(s):  
Vladimir Lyandres

Continuous Markov processes widely used as a tool for modeling random phenomena in numerous applications, can be defined as solutions of generally nonlinear stochastic differential equations (SDEs) with certain drift and diffusion coefficients which together governs the process’ probability density and correlation functions. Usually it is assumed that the diffusion coefficient does not depend on the process' current value. For presentation of non-Gaussian real processes this assumption becomes undesirable, leads generally to complexity of the correlation function estimation. We consider its analysis for the process with particular pairs of the drift and diffusion coefficients providing the given stationary probability distribution of the considered process


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 797
Author(s):  
Leonid I. Piterbarg

Stochastic flows mimicking 2D turbulence in compressible media are considered. Particles driven by such flows can collide and we study the collision (caustic) frequency. Caustics occur when the Jacobian of a flow vanishes. First, a system of nonlinear stochastic differential equations involving the Jacobian is derived and reduced to a smaller number of unknowns. Then, for special cases of the stochastic forcing, upper and lower bounds are found for the mean number of caustics as a function of Stokes number. The bounds yield an exact asymptotic for small Stokes numbers. The efficiency of the bounds is verified numerically. As auxiliary results we give rigorous proofs of the well known expressions for the caustic frequency and Lyapunov exponent in the one-dimensional model. Our findings may also be used for estimating the mean time when a 2D Riemann type partial differential equation with a stochastic forcing loses uniqueness of solutions.


Sign in / Sign up

Export Citation Format

Share Document