scholarly journals Unicity for representations of the Kauffman bracket skein algebra

2018 ◽  
Vol 215 (2) ◽  
pp. 609-650 ◽  
Author(s):  
Charles Frohman ◽  
Joanna Kania-Bartoszynska ◽  
Thang Lê
Keyword(s):  
2017 ◽  
Vol 26 (12) ◽  
pp. 1750081
Author(s):  
Sang Youl Lee

In this paper, we introduce a notion of virtual marked graphs and their equivalence and then define polynomial invariants for virtual marked graphs using invariants for virtual links. We also formulate a way how to define the ideal coset invariants for virtual surface-links using the polynomial invariants for virtual marked graphs. Examining this theory with the Kauffman bracket polynomial, we establish a natural extension of the Kauffman bracket polynomial to virtual marked graphs and found the ideal coset invariant for virtual surface-links using the extended Kauffman bracket polynomial.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950083 ◽  
Author(s):  
Takeyoshi Kogiso ◽  
Michihisa Wakui

In this paper, we build a bridge between Conway–Coxeter friezes (CCFs) and rational tangles through the Kauffman bracket polynomials. One can compute a Kauffman bracket polynomial attached to rational links by using CCFs. As an application, one can give a complete invariant on CCFs of zigzag-type.


2014 ◽  
Vol 225 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jea-Pil Cho ◽  
Răzvan Gelca

2010 ◽  
Vol 19 (08) ◽  
pp. 1001-1023 ◽  
Author(s):  
XIAN'AN JIN ◽  
FUJI ZHANG

It is well known that Jones polynomial (hence, Kauffman bracket polynomial) of links is, in general, hard to compute. By now, Jones polynomials or Kauffman bracket polynomials of many link families have been computed, see [4, 7–11]. In recent years, the computer algebra (Maple) techniques were used to calculate link polynomials for various link families, see [7, 12–14]. In this paper, we try to design a maple program to calculate the explicit expression of the Kauffman bracket polynomial of Montesinos links. We first introduce a family of "ring of tangles" links, which includes Montesinos links as a special subfamily. Then, we provide a closed-form formula of Kauffman bracket polynomial for a "ring of tangles" link in terms of Kauffman bracket polynomials of the numerators and denominators of the tangles building the link. Finally, using this formula and known results on rational links, the Maple program is designed.


2020 ◽  
Vol 29 (02) ◽  
pp. 2040004 ◽  
Author(s):  
Denis P. Ilyutko ◽  
Vassily O. Manturov

In V. O. Manturov, On free knots, preprint (2009), arXiv:math.GT/0901.2214], the second named author constructed the bracket invariant [Formula: see text] of virtual knots valued in pictures (linear combinations of virtual knot diagrams with some crossing information omitted), such that for many diagrams [Formula: see text], the following formula holds: [Formula: see text], where [Formula: see text] is the underlying graph of the diagram, i.e. the value of the invariant on a diagram equals the diagram itself with some crossing information omitted. This phenomenon allows one to reduce many questions about virtual knots to questions about their diagrams. In [S. Nelson, M. E. Orrison and V. Rivera, Quantum enhancements and biquandle brackets, preprint (2015), arXiv:math.GT/1508.06573], the authors discovered the following phenomenon: having a biquandle coloring of a certain knot, one can enhance various state-sum invariants (say, Kauffman bracket) by using various coefficients depending on colors. Taking into account that the parity can be treated in terms of biquandles, we bring together the two ideas from these papers and construct the picture-valued parity-biquandle bracket for classical and virtual knots. This is an invariant of virtual knots valued in pictures. Both the parity bracket and Nelson–Orrison–Rivera invariants are partial cases of this invariant, hence this invariant enjoys many properties of various kinds. Recently, the authors together with E. Horvat and S. Kim have found that the picture-valued phenomenon works in the classical case.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950006 ◽  
Author(s):  
Valeriano Aiello ◽  
Roberto Conti

In a recent paper, Jones introduced a correspondence between elements of the Thompson group [Formula: see text] and certain graphs/links. It follows from his work that several polynomial invariants of links, such as the Kauffman bracket, can be reinterpreted as coefficients of certain unitary representations of [Formula: see text]. We give a somewhat different and elementary proof of this fact for the Kauffman bracket evaluated at certain roots of unity by means of a statistical mechanics model interpretation. Moreover, by similar methods we show that, for some particular specializations of the variables, other familiar link invariants and graph polynomials, namely the number of [Formula: see text]-colorings and the Tutte polynomial, can be viewed as positive definite functions on [Formula: see text].


1995 ◽  
Vol 220 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Jim Hoste ◽  
Józef H. Przytycki

2008 ◽  
Vol 17 (12) ◽  
pp. 1539-1547 ◽  
Author(s):  
LISA HERNÁNDEZ ◽  
XIAO-SONG LIN

A knot diagram can be divided by a circle into two parts, such that each part can be coded by a planar tree with integer weights on its edges. A half of the number of intersection points of this circle with the knot diagram is called the girth. The girth of a knot is the minimal girth of all diagrams of this knot. The girth of a knot minus one is an upper bound of the Heegaard genus of the 2-fold branched covering of that knot. We will use Topological Quantum Field Theory (TQFT) coming from the Kauffman bracket to determine the girth of some knots. Consequently, our method can be used to determine the Heegaard genus of the 2-fold branched covering of some knots.


Sign in / Sign up

Export Citation Format

Share Document