Bounded-Degree Independent Sets in Planar Graphs

2005 ◽  
Vol 38 (3) ◽  
pp. 253-278 ◽  
Author(s):  
Therese Biedl ◽  
Dana F. Wilkinson
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2019 ◽  
Vol 48 (5) ◽  
pp. 1487-1502 ◽  
Author(s):  
Michael A. Bekos ◽  
Henry Förster ◽  
Martin Gronemann ◽  
Tamara Mchedlidze ◽  
Fabrizio Montecchiani ◽  
...  
Keyword(s):  

2017 ◽  
Vol 704 ◽  
pp. 92-93
Author(s):  
Lucia Draque Penso ◽  
Fábio Protti ◽  
Dieter Rautenbach ◽  
Uéverton dos Santos Souza

2013 ◽  
Vol 24 (7) ◽  
pp. 1341-1354 ◽  
Author(s):  
Xu Li ◽  
Nathalie Mitton ◽  
Isabelle Simplot-Ryl ◽  
David Simplot-Ryl

1989 ◽  
Vol 2 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Sandeep N. Bhatt ◽  
F. R. K. Chung ◽  
F. T. Leighton ◽  
Arnold L. Rosenberg

Sign in / Sign up

Export Citation Format

Share Document