hoc networks
Recently Published Documents


TOTAL DOCUMENTS

21799
(FIVE YEARS 2171)

H-INDEX

165
(FIVE YEARS 15)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-27
Author(s):  
Gaurav Singal ◽  
Vijay Laxmi ◽  
Manoj Singh Gaur ◽  
D. Vijay Rao ◽  
Riti Kushwaha ◽  
...  

Multicast communication plays a pivotal role in Edge based Mobile Ad hoc Networks (MANETs). MANETs can provide low-cost self-configuring devices for multimedia data communication that can be used in military battlefield, disaster management, connected living, and public safety networks. A Multicast communication should increase the network performance by decreasing the bandwidth consumption, battery power, and routing overhead. In recent years, a number of multicast routing protocols (MRPs) have been proposed to resolve above listed challenges. Some of them are used for dynamic establishment of reliable route for multimedia data communication. This article provides a detailed survey of the merits and demerits of the recently developed techniques. An ample study of various Quality of Service (QoS) techniques and enhancement is also presented. Later, mesh topology-based MRPs are classified according to enhancement in routing mechanism and QoS modification. This article covers the most recent, robust, and reliable QoS-aware mesh based MRPs, classified on the basis of their operational features, and pros and cons. Finally, a comparative study has been presented on the basis of their performance parameters on the proposed protocols.


2022 ◽  
Vol 34 (4) ◽  
pp. 0-0

Medical sensors are implanted within the vital organs of human body to record and monitor the vital signs of pulse rate, heartbeat, electrocardiogram, body mass index, temperature, blood pressure, etc. to ensure their effective functioning. These are monitored to detect patient’s health from anywhere and at any time. The Wireless Sensor Networks are embedded in the form of Body Area Nets and are capable of sensing and storing the information on a digital device. Later this information could be inspected or even sent to a remotely located storage device specifically (server or any public or private cloud for analysis) so that a medical doctor can diagnose the present medical condition of a person or a patient. Such a facility would be of immense help in the event of an emergency such as a sudden disaster or natural calamity where communication is damaged, and the potential sources become inaccessible. The aim of this paper is to create a mobile platform using Mobile Ad hoc Network to support healthcare connectivity and treatment in emergency situations.


Author(s):  
Hayder M. Amer ◽  
Ethar Abduljabbar Hadi ◽  
Lamyaa Ghaleb Shihab ◽  
Hawraa H. Al Mohammed ◽  
Mohammed J. Khami

Technology such as vehicular ad hoc networks can be used to enhance the convenience and safety of passenger and drivers. The vehicular ad hoc networks safety applications suffer from performance degradation due to channel congestion in high-density situations. In order to improve vehicular ad hoc networks reliability, performance, and safety, wireless channel congestion should be examined. Features of vehicular networks such as high transmission frequency, fast topology change, high mobility, high disconnection make the congestion control is a challenging task. In this paper, a new congestion control approach is proposed based on the concept of hybrid power control and contention window to ensure a reliable and safe communications architecture within the internet of vehicles network. The proposed approach performance is investigated using an urban scenario. Simulation results show that the network performance has been enhanced by using the hybrid developed strategy in terms of received messages, delay time, messages loss, data collision and congestion ratio.


Author(s):  
Vu Khanh Quy ◽  
Pham Minh Chuan ◽  
Le Anh Ngoc

Mobile ad-hoc networks (MANETs) is a set of mobile devices that can self-configuration, self-established parameters to transmission in-network. Although limited inability, MANETs have been applied in many domains to serve humanity in recent years, such as disaster recovery, forest fire, military, intelligent traffic, or IoT ecosystems. Because of the movement of network devices, the system performance is low. In order to MANETs could more contribution in the future of the Internet, the routing is a significant problem to enhance the performance of MANETs. In this work, we proposed a new delay-based protocol aim enhance the system performance, called performance routing protocol based on delay (PRPD). In order to analyze the efficiency of the proposed solution, we compared the proposed protocol with traditional protocols. Experiment results showed that the PRPD protocol improved packet delivery ratio, throughput, and delay compared to the traditional protocols.


Author(s):  
Hala Khankhour ◽  
Otman Abdoun ◽  
Jâafar Abouchabaka

<span>This article presents a new approach of integrating parallelism into the genetic algorithm (GA), to solve the problem of routing in a large ad hoc network, the goal is to find the shortest path routing. Firstly, we fix the source and destination, and we use the variable-length chromosomes (routes) and their genes (nodes), in our work we have answered the following question: what is the better solution to find the shortest path: the sequential or parallel method?. All modern systems support simultaneous processes and threads, processes are instances of programs that generally run independently, for example, if you start a program, the operating system spawns a new process that runs parallel elements to other programs, within these processes, we can use threads to execute code simultaneously. Therefore, we can make the most of the available central processing unit (CPU) cores. Furthermore, the obtained results showed that our algorithm gives a much better quality of solutions. Thereafter, we propose an example of a network with 40 nodes, to study the difference between the sequential and parallel methods, then we increased the number of sensors to 100 nodes, to solve the problem of the shortest path in a large ad hoc network.</span>


Author(s):  
Dr. Sultanuddin SJ ◽  
◽  
Dr. Md. Ali Hussain ◽  

Mobile ad hoc networks (MANETs) have evolved into a leading multi-hop infrastructure less wireless communication technology where every node performs the function of a router. Ad- hoc networks have been spontaneously and specifically designed for the nodes to communicate with each other in locations where it is either complex or impractical to set up an infrastructure. The overwhelming truth is that with IoT emergence, the number of devices being connected every single second keeps increasing tremendously on account of factors like scalability, cost factor and scalability which are beneficial to several sectors like education, disaster management, healthcare, espionage etc., where the identification and allocation of resources as well as services is a major constraint. Nevertheless, this infrastructure with dynamic mobile nodes makes it more susceptible to diverse attack scenarios especially in critical circumstances like combat zone communications where security is inevitable and vulnerabilities in the MANET could be an ideal choice to breach the security. Therefore, it is crucial to select a robust and reliable system that could filter malicious activities and safeguard the network. Network topology and mobility constraints poses difficulty in identifying malicious nodes that can infuse false routes or packets could be lost due to certain attacks like black hole or worm hole. Hence our objective is to propose a security solution to above mentioned issue through ML based anomaly detection and which detects and isolates the attacks in MANETs. Most of the existing technologies detect the anomalies by utilizing static behavior; this may not prove effective as MANET portrays dynamic behavior. Machine learning in MANETs helps in constructing an analytical model for predicting security threats that could pose enormous challenges in future. Machine learning techniques through its statistical and logical methods offers MANETs the learning potential and encourages towards adaptation to different environments. The major objective of our study is to identify the intricate patterns and construct a secure mobile ad-hoc network by focusing on security aspects by identifying malicious nodes and mitigate attacks. Simulation-oriented results establish that the proposed technique has better PDR and EED in comparison to the other existing techniques.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Muhammad Bilal Latif ◽  
Feng Liu ◽  
Kai Liu

An autonomous driving environment poses a very stringent requirement for the timely delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access (TDMA)-based medium access control (MAC) protocols are considered a promising solution because of their time-bound message delivery. However, in the event of mobility-caused packet collisions, they may experience an unpredicted and extended delay in delivering messages, which can cause catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions. One vehicle in the merging collisions retains the time slot, and the others release the slot. The common neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to avoid further access collisions. Simulation results show that the proposed protocol reduces packet loss more than the existing methods. Consequently, the average delay between the successfully delivered periodic messages is also reduced.


Sign in / Sign up

Export Citation Format

Share Document