connected subgraph
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 56)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Qiang Lai ◽  
Hong-hao Zhang

Abstract The identification of key nodes plays an important role in improving the robustness of the transportation network. For different types of transportation networks, the effect of the same identification method may be different. It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks. Based on the knowledge of complex networks, the metro networks and the bus networks are selected as the objects, and the key nodes are identified by the node degree identification method, the neighbor node degree identification method, the weighted k-shell degree neighborhood identification method (KSD), the degree k-shell identification method (DKS), and the degree k-shell neighborhood identification method (DKSN). Take the network efficiency and the largest connected subgraph as the effective indicators. The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.


2021 ◽  
Author(s):  
Wei Ai ◽  
Jia Xu ◽  
Hongen Shao ◽  
Ze Wang ◽  
Tao Meng
Keyword(s):  

2021 ◽  
Author(s):  
Lina Ba ◽  
Heping Zhang

Abstract As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $\kappa (G; T)$ (resp. $T$-substructure connectivity $\kappa ^{s}(G; T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that each is isomorphic to $T$ (resp. to a connected subgraph of $T$) so that $G-F$ is disconnected. For $n$-dimensional hypercube $Q_{n}$, Lin et al. showed $\kappa (Q_{n};K_{1,1})=\kappa ^{s}(Q_{n};K_{1,1})=n-1$ and $\kappa (Q_{n};K_{1,r})=\kappa ^{s}(Q_{n};K_{1,r})=\lceil \frac{n}{2}\rceil $ for $2\leq r\leq 3$ and $n\geq 3$ (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107). Sabir et al. obtained that $\kappa (Q_{n};K_{1,4})=\kappa ^{s}(Q_{n};K_{1,4})= \lceil \frac{n}{2}\rceil $ for $n\geq 6$ and for $n$-dimensional folded hypercube $FQ_{n}$, $\kappa (FQ_{n};K_{1,1})=\kappa ^{s}(FQ_{n};K_{1,1})=n$, $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ with $2\leq r\leq 3$ and $n\geq 7$ (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44–55). They proposed an open problem of determining $K_{1,r}$-structure connectivity of $Q_n$ and $FQ_n$ for general $r$. In this paper, we obtain that for each integer $r\geq 2$, $\kappa (Q_{n};K_{1,r})$  $=\kappa ^{s}(Q_{n};K_{1,r})$  $=\lceil \frac{n}{2}\rceil $ and $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ for all integers $n$ larger than $r$ in quare scale. For $4\leq r\leq 6$, we separately confirm the above result holds for $Q_n$ in the remaining cases.


2021 ◽  
Author(s):  
Michał Dębski ◽  
Piotr Micek ◽  
Felix Schröder ◽  
Stefan Felsner

A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$ either $\phi$ uses more than $p$ colors on $H$ or there is a color that appears exactly once on $H$. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function $f$ such that for every $p\geq1$, every graph in the class admits a $p$-centered coloring using at most $f(p)$ colors. In this paper, we give upper bounds for the maximum number of colors needed in a $p$-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit $p$-centered colorings with $O(p^3\log p)$ colors where the previous bound was $O(p^{19})$; (2) bounded degree graphs admit $p$-centered colorings with $O(p)$ colors while it was conjectured that they may require exponential number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth $t$ that require $\binom{p+t}{t}$ colors in any $p$-centered coloring. This bound matches the upper bound; (5) there are planar graphs that require $\Omega(p^2\log p)$ colors in any $p$-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth $3$. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yang Tian ◽  
Yanan Wang ◽  
Hui Tian ◽  
Qimei Cui

In past studies, researchers find that endpoint degree, H-index, and coreness can quantify the influence of endpoints in link prediction, especially the synthetical endpoint degree and H-index improve prediction performances compared with the traditional link prediction models. However, neither endpoint degree nor H-index can describe the aggregation degree of neighbors, which results in inaccurate expression of the endpoint influence intensity. Through abundant investigations, we find that researchers ignore the importance of coreness for the influence of endpoints. Meanwhile, we also find that the synthetical endpoint degree and coreness can not only describe the maximal connected subgraph of endpoints accurately but also express the endpoint influence intensity. In this paper, we propose the DCHI model by synthesizing endpoint degree and coreness and the HCHI model by synthesizing H-index and coreness on SRW-based models, respectively. Extensive simulations on twelve real benchmark datasets show that, in most cases, DCHI shows better prediction performances in link prediction than HCHI and other traditional models.


Author(s):  
Argyrios Deligkas ◽  
Eduard Eiben ◽  
Robert Ganian ◽  
Thekla Hamm ◽  
Sebastian Ordyniak

We study the Connected Fair Division problem (CFD), which generalizes the fundamental problem of fairly allocating resources to agents by requiring that the items allocated to each agent form a connected subgraph in a provided item graph G. We expand on previous results by providing a comprehensive complexity-theoretic understanding of CFD based on several new algorithms and lower bounds while taking into account several well-established notions of fairness: proportionality, envy-freeness, EF1 and EFX. In particular, we show that to achieve tractability, one needs to restrict both the agents and the item graph in a meaningful way. We design (XP)-algorithms for the problem parameterized by (1) clique-width of G plus the number of agents and (2) treewidth of G plus the number of agent types, along with corresponding lower bounds. Finally, we show that to achieve fixed-parameter tractability, one needs to not only use a more restrictive parameterization of G, but also include the maximum item valuation as an additional parameter.


Algorithmica ◽  
2021 ◽  
Author(s):  
Eleni C. Akrida ◽  
Argyrios Deligkas ◽  
Themistoklis Melissourgos ◽  
Paul G. Spirakis

AbstractWe study a security game over a network played between a defender and kattackers. Every attacker chooses, probabilistically, a node of the network to damage. The defender chooses, probabilistically as well, a connected induced subgraph of the network of $$\lambda $$ λ nodes to scan and clean. Each attacker wishes to maximize the probability of escaping her cleaning by the defender. On the other hand, the goal of the defender is to maximize the expected number of attackers that she catches. This game is a generalization of the model from the seminal paper of Mavronicolas et al. Mavronicolas et al. (in: International symposium on mathematical foundations of computer science, MFCS, pp 717–728, 2006). We are interested in Nash equilibria of this game, as well as in characterizing defense-optimal networks which allow for the best equilibrium defense ratio; this is the ratio of k over the expected number of attackers that the defender catches in equilibrium. We provide a characterization of the Nash equilibria of this game and defense-optimal networks. The equilibrium characterizations allow us to show that even if the attackers are centrally controlled the equilibria of the game remain the same. In addition, we give an algorithm for computing Nash equilibria. Our algorithm requires exponential time in the worst case, but it is polynomial-time for $$\lambda $$ λ constantly close to 1 or n. For the special case of tree-networks, we further refine our characterization which allows us to derive a polynomial-time algorithm for deciding whether a tree is defense-optimal and if this is the case it computes a defense-optimal Nash equilibrium. On the other hand, we prove that it is $${\mathtt {NP}}$$ NP -hard to find a best-defense strategy if the tree is not defense-optimal. We complement this negative result with a polynomial-time constant-approximation algorithm that computes solutions that are close to optimal ones for general graphs. Finally, we provide asymptotically (almost) tight bounds for the Price of Defense for any $$\lambda $$ λ ; this is the worst equilibrium defense ratio over all graphs.


2021 ◽  
Author(s):  
Guilherme G. Arcencio ◽  
Matheus T. Mattioli ◽  
Pedro H. D. B. Hokama ◽  
Mário César San Felice

In the k-Minimum Spanning Subgraph problem with d-Degree Center we want to find a minimum cost spanning connected subgraph with n - 1 + k edges and at least degree d in the center vertex, with n being the number of vertices. In this paper we describe an algorithm for this problem and present correctness demonstrations which we believe are simpler than those found in the literature. A solution for the k-Minimum Spanning Subgraph problem with d-Degree can be used to formulate spanning cover inequalities for the capacitated vehicle routing problem.


Author(s):  
T. Martinod ◽  
V. Pollet ◽  
B. Darties ◽  
R. Giroudeau ◽  
J.-C. König
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4428
Author(s):  
Ju-Han Yoo ◽  
Dong-Hwan Kim

This paper presents a robust, efficient lane-marking feature extraction method using a graph model-based approach. To extract the features, the proposed hat filter with adaptive sizes is first applied to each row of an input image and local maximum values are extracted from the filter response. The features with the maximum values are fed as nodes to a connected graph structure, and the edges of the graph are constructed using the proposed neighbor searching method. Nodes related to lane-markings are then selected by finding a connected subgraph in the graph. The selected nodes are fitted to line segments as the proposed features of lane-markings. The experimental results show that the proposed method not only yields at least 2.2% better performance compared to the existing methods on the KIST dataset, which includes various types of sensing noise caused by environmental changes, but also improves at least 1.4% better than the previous methods on the Caltech dataset which has been widely used for the comparison of lane marking detection. Furthermore, the proposed lane marking detection runs with an average of 3.3 ms, which is fast enough for real-time applications.


Sign in / Sign up

Export Citation Format

Share Document