On Finite Semigroups Embeddable in Inverse Semigroups

2001 ◽  
Vol 62 (2) ◽  
pp. 329-330
Author(s):  
Boris M. Schein
1987 ◽  
Vol 110 (2) ◽  
pp. 306-323 ◽  
Author(s):  
S.W Margolis ◽  
J.E Pin

Author(s):  
C. J. Ash ◽  
T. E. Hall

AbstractWe show that every such semigroup is a homomorphic image of a subsemigroup of some finite inverse semigroup. This shows that the pseudovariety generated by the finite inverse semigroups consists of exactly the finite semigroups with commuting idempotents.


1990 ◽  
Vol 41 (2) ◽  
pp. 161-184 ◽  
Author(s):  
Jean-Camille Birget ◽  
Stuart Margolis ◽  
John Rhodes

We prove that if the “type-II-construct” subsemigroup of a finite semigroup S is regular, then the “type-II” subsemigroup of S is computable (actually in this case, type-II and type-II-construct are equal). This, together with certain older results about pseudo-varieties of finite semigroups, leads to further results:(1) We get a new proof of Ash's theorem: If the idempotents in a finite semigroup S commute, then S divides a finite inverse semigroup. Equivalently: The pseudo-variety generated by the finite inverse semigroups consists of those finite semigroups whose idempotents commute.(2) We prove: If the idempotents of a finite semigroup S form a subsemigroup then S divides a finite orthodox semigroup. Equivalently: The pseudo-variety generated by the finite orthodox semigroups consists of those finite semigroups whose idempotents form a subsemigroup.(3) We prove: The union of all the subgroups of a semigroup S forms a subsemigroup if and only if 5 belongs to the pseudo-variety u * G if and only if Sn belongs to u. Here u denotes the pseudo-variety of finite semigroups which are unions of groups.For these three classes of semigroups, type-II is equal to type-II construct.


2003 ◽  
Vol 13 (04) ◽  
pp. 481-497 ◽  
Author(s):  
MARCEL JACKSON

We describe the inherently non-dualisable finite algebras from some semigroup related classes. The classes for which this problem is solved include the variety of bands, the pseudovariety of aperiodic monoids, commutative monoids, and (assuming a reasonable conjecture in the literature) the varieties of all finite monoids and finite inverse semigroups. The first example of an inherently non-dualisable entropic algebra is also presented.


2014 ◽  
Vol 89 (2) ◽  
pp. 469-474 ◽  
Author(s):  
João Araújo ◽  
Michael Kinyon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document