finite semigroups
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 180 (4) ◽  
pp. 333-350
Author(s):  
Paul Gastin ◽  
Amaldev Manuel ◽  
R. Govind

We present first-order (FO) and monadic second-order (MSO) logics with predicates ‘between’ and ‘neighbour’ that characterise the class of regular languages that are closed under the reverse operation and its subclasses. The ternary between predicate bet(x, y, z) is true if the position y is strictly between the positions x and z. The binary neighbour predicate N(x, y) is true when the the positions x and y are adjacent. It is shown that the class of reversible regular languages is precisely the class definable in the logics MSO(bet) and MSO(N). Moreover the class is definable by their existential fragments EMSO(bet) and EMSO(N), yielding a normal form for MSO formulas. In the first-order case, the logic FO(bet) corresponds precisely to the class of reversible languages definable in FO(<). Every formula in FO(bet) is equivalent to one that uses at most 3 variables. However the logic FO(N) defines only a strict subset of reversible languages definable in FO(+1). A language-theoretic characterisation of the class of languages definable in FO(N), called locally-reversible threshold-testable (LRTT), is given. In the second part of the paper we show that the standard connections that exist between MSO and FO logics with order and successor predicates and varieties of finite semigroups extend to the new setting with the semigroups extended with an involution operation on its elements. The case is different for FO(N) where we show that one needs an additional equation that uses the involution operator to characterise the class. While the general problem of characterising FO(N) is open, an equational characterisation is shown for the case of neutral letter languages.


Author(s):  
Gerard O’Reilly ◽  
Martyn Quick ◽  
Nik Ruškuc

AbstractWe investigate four finiteness conditions related to residual finiteness: complete separability, strong subsemigroup separability, weak subsemigroup separability and monogenic subsemigroup separability. For each of these properties we examine under which conditions the property is preserved under direct products. We also consider if any of the properties are inherited by the factors in a direct product. We give necessary and sufficient conditions for finite semigroups to preserve the properties of strong subsemigroup separability and monogenic subsemigroup separability in a direct product.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Iryna Banakh ◽  
Taras Banakh ◽  
Serhii Bardyla

A subset A of a semigroup S is called a chain (antichain) if ab∈{a,b} (ab∉{a,b}) for any (distinct) elements a,b∈A. A semigroup S is called periodic if for every element x∈S there exists n∈N such that xn is an idempotent. A semigroup S is called (anti)chain-finite if S contains no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every idempotent e of S the set e∞={x∈S:∃n∈N(xn=e)} is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of finitely many chains.


2021 ◽  
Author(s):  
Ülo Reimaa ◽  
Valdis Laan ◽  
Lauri Tart

2021 ◽  
pp. 120-128
Author(s):  
A. N. Rybalov ◽  

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.


Sign in / Sign up

Export Citation Format

Share Document