finite semigroup
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Jitender Kumar

The large rank of a finite semigroup [Formula: see text] is the least number [Formula: see text] such that every subset of [Formula: see text] with [Formula: see text] elements generates [Formula: see text]. This paper obtains the large ranks of [Formula: see text] and [Formula: see text], the semigroups of singular transformations, injective partial and partial transformations on a finite chain [Formula: see text], which preserve or reverse the order, respectively. As a consequence, we obtain the large ranks of [Formula: see text] and [Formula: see text], the semigroups of injective order-preserving partial transformations and order-preserving partial transformations on [Formula: see text], respectively.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Iryna Banakh ◽  
Taras Banakh ◽  
Serhii Bardyla

A subset A of a semigroup S is called a chain (antichain) if ab∈{a,b} (ab∉{a,b}) for any (distinct) elements a,b∈A. A semigroup S is called periodic if for every element x∈S there exists n∈N such that xn is an idempotent. A semigroup S is called (anti)chain-finite if S contains no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every idempotent e of S the set e∞={x∈S:∃n∈N(xn=e)} is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of finitely many chains.


2021 ◽  
pp. 5-11
Author(s):  
A. Shevlyakov ◽  
◽  

For a semigroup S (group G) we study relational equations and describe all semigroups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: if a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1219
Author(s):  
A. Ballester-Bolinches ◽  
V. Pérez-Calabuig

The problem of computing the abelian kernel of a finite semigroup was first solved by Delgado describing an algorithm that decides whether a given element of a finite semigroup S belongs to the abelian kernel. Steinberg extended the result for any variety of abelian groups with decidable membership. In this paper, we used a completely different approach to complete these results by giving an exact description of the abelian kernel of an inverse semigroup. An abelian group that gives this abelian kernel was also constructed.


2019 ◽  
Vol 29 (08) ◽  
pp. 1431-1449
Author(s):  
John Rhodes ◽  
Anne Schilling

We show that the stationary distribution of a finite Markov chain can be expressed as the sum of certain normal distributions. These normal distributions are associated to planar graphs consisting of a straight line with attached loops. The loops touch only at one vertex either of the straight line or of another attached loop. Our analysis is based on our previous work, which derives the stationary distribution of a finite Markov chain using semaphore codes on the Karnofsky–Rhodes and McCammond expansion of the right Cayley graph of the finite semigroup underlying the Markov chain.


2019 ◽  
Vol 109 (1) ◽  
pp. 24-35
Author(s):  
ASHLEY CLAYTON ◽  
NIK RUŠKUC

The direct product $\mathbb{N}\times \mathbb{N}$ of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for $\mathbb{N}\times S$, where $S$ is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if $S$ is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of $S$ has a relative left or right identity element.


2019 ◽  
Vol 62 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Samuel J. van Gool ◽  
Benjamin Steinberg

AbstractThis paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell’s aperiodic pointlike theorem. We use a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided semidirect product whose components are built from two subsemigroups $T_{1}$, $T_{2}$, which together generate $T$, and the subsemigroup generated by their setwise product $T_{1}T_{2}$. In this sense we decompose $T$ by merging the subsemigroups $T_{1}$ and $T_{2}$. More generally, our technique merges semigroup homomorphisms from free semigroups.


2018 ◽  
Vol 30 (4) ◽  
pp. 947-971
Author(s):  
Igor Dolinka ◽  
Robert D. Gray

Abstract In 1959, Philip Hall introduced the locally finite group {\mathcal{U}} , today known as Hall’s universal group. This group is countable, universal, simple, and any two finite isomorphic subgroups are conjugate in {\mathcal{U}} . It can explicitly be described as a direct limit of finite symmetric groups. It is homogeneous in the model-theoretic sense since it is the Fraïssé limit of the class of all finite groups. Since its introduction Hall’s group and several natural generalisations have been studied widely. In this article we use a generalisation of Fraïssé’s theory to construct a countable, universal, locally finite semigroup {\mathcal{T}} , that arises as a direct limit of finite full transformation semigroups, and has the highest possible degree of homogeneity. We prove that it is unique up to isomorphism among semigroups satisfying these properties. We prove an analogous result for inverse semigroups, constructing a maximally homogeneous universal locally finite inverse semigroup {\mathcal{I}} which is a direct limit of finite symmetric inverse semigroups (semigroups of partial bijections). The semigroups {\mathcal{T}} and {\mathcal{I}} are the natural counterparts of Hall’s universal group for semigroups and inverse semigroups, respectively. While these semigroups are not homogeneous, they still exhibit a great deal of symmetry. We study the structural features of these semigroups and locate several well-known homogeneous structures within them, such as the countable generic semilattice, the countable random bipartite graph, and Hall’s group itself.


2018 ◽  
Vol 505 ◽  
pp. 559-596 ◽  
Author(s):  
C.R. Donoven ◽  
J.D. Mitchell ◽  
W.A. Wilson

2018 ◽  
Vol 106 (1) ◽  
pp. 127-142
Author(s):  
MARKUS STEINDL

Fix a finite semigroup $S$ and let $a_{1},\ldots ,a_{k},b$ be tuples in a direct power $S^{n}$. The subpower membership problem (SMP) for $S$ asks whether $b$ can be generated by $a_{1},\ldots ,a_{k}$. For combinatorial Rees matrix semigroups we establish a dichotomy result: if the corresponding matrix is of a certain form, then the SMP is in P; otherwise it is NP-complete. For combinatorial Rees matrix semigroups with adjoined identity, we obtain a trichotomy: the SMP is either in P, NP-complete, or PSPACE-complete. This result yields various semigroups with PSPACE-complete SMP including the six-element Brandt monoid, the full transformation semigroup on three or more letters, and semigroups of all $n$ by $n$ matrices over a field for $n\geq 2$.


Sign in / Sign up

Export Citation Format

Share Document