scholarly journals Necessary Optimality Conditions for Some Control Problems of Elliptic Equations with Venttsel Boundary Conditions

2009 ◽  
Vol 61 (3) ◽  
pp. 337-351 ◽  
Author(s):  
Yousong Luo
Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 112
Author(s):  
Savin Treanţă

In this paper, we investigate the Lagrange dynamics generated by a class of isoperimetric constrained controlled optimization problems involving second-order partial derivatives and boundary conditions. More precisely, we derive necessary optimality conditions for the considered class of variational control problems governed by path-independent curvilinear integral functionals. Moreover, the theoretical results presented in the paper are accompanied by an illustrative example. Furthermore, an algorithm is proposed to emphasize the steps to be followed to solve a control problem such as the one studied in this paper.


2020 ◽  
pp. 152-158
Author(s):  
Stepan Sorokin ◽  
Maxim Staritsyn

We propose and compare three numeric algorithms for optimal control of state-linear impulsive systems. The algorithms rely on the standard transformation of impulsive control problems through the discontinuous time rescaling, and the so-called “feedback”, direct and dual, maximum principles. The feedback maximum principles are variational necessary optimality conditions operating with feedback controls, which are designed through the usual constructions of the Pontryagin’s Maximum Principle (PMP); though these optimality conditions are formulated completely in the formalism of PMP, they essentially strengthen it. All the algorithms are non-local in the sense that they are aimed at improving non-optimal extrema of PMP (local minima), and, therefore, show the potential of global optimization.


2019 ◽  
Vol 22 (05) ◽  
pp. 1950031
Author(s):  
José Luiz Boldrini ◽  
Exequiel Mallea-Zepeda ◽  
Marko Antonio Rojas-Medar

Certain classes of optimal boundary control problems for the Boussinesq equations with variable density are studied. Controls for the velocity vector and temperature are applied on parts of the boundary of the domain, while Dirichlet and Navier friction boundary conditions for the velocity and Dirichlet and Robin boundary conditions for the temperature are assumed on the remaining parts of the boundary. As a first step, we prove a result on the existence of weak solution of the dynamical equations; this is done by first expressing the fluid density in terms of the stream-function. Then, the boundary optimal control problems are analyzed, and the existence of optimal solutions are proved; their corresponding characterization in terms of the first-order optimality conditions are obtained. Such optimality conditions are rigorously derived by using a penalty argument since the weak solutions are not necessarily unique neither isolated, and so standard methods cannot be applied.


Sign in / Sign up

Export Citation Format

Share Document