dynamical equations
Recently Published Documents


TOTAL DOCUMENTS

748
(FIVE YEARS 150)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Xiaopeng Li ◽  
Dongyang Shang ◽  
Fanjie Li ◽  
Renzhen Chen

A power line inspection robot has to overcome many kinds of obstacles in inspection processes. The strain clamp is the obstacles difficult for inspection robots to overcome. The inspection robot needs to have a particular climbing ability to overcome the strain clamp. Therefore, the ability to climb power lines is the key point of the inspection robot’s design. An inspection robot with retractable double serial manipulators is proposed to improve the climbing and obstacle-crossing ability. Besides, this paper shows that the inspection robot is more suitable for climbing from static analysis and dynamic evaluation index. Firstly, the obstacle-crossing processes and structures of the inspection robot are introduced. Next, the static analysis is carried out when inspection robot climbs the power lines. The static analysis shows that the new inspection robot has a smaller driving torque. What’s more, the dynamic model of the inspection robot is established by Lagrange’s dynamical equations. By constructing the dynamic evaluation indexes, the inspection robot with retractable arms performs better dynamic characteristics. Finally, a prototype robot is carried out to cross obstacles and climb up power lines. The results show that the inspection robot can overcome different obstacles and has a good climbing performance.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 498
Author(s):  
Mariya Iv. Trukhanova ◽  
Yuri N. Obukhov

We develop a many-particle quantum-hydrodynamical model of fermion matter interacting with the external classical electromagnetic and gravitational/inertial and torsion fields. The consistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac fermions on the basis of the nonrelativistic Pauli-like equation obtained via the Foldy–Wouthuysen transformation. With the help of the Madelung decomposition approach, the explicit relations between the microscopic and macroscopic fluid variables are derived. The closed system of equations of quantum hydrodynamics encompasses the continuity equation, and the dynamical equations of the momentum balance and the spin density evolution. The possible experimental manifestations of the torsion in the dynamics of spin waves is discussed.


Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
M. Yousaf

This paper aims to investigate the stability constraints under the influence of particular modified gravity theory [Formula: see text], i.e. [Formula: see text] gravity in which the Lagrangian is a varying function of [Formula: see text] and trace of energy momentum tensor ([Formula: see text]). We examine stable behavior for compact cylindrical star having anisotropic symmetric configuration. We establish dynamical equations as well as equations of continuity in the background of this particular non-minimal coupled [Formula: see text]. We utilize perturbation technique which will be applied on geometrical as well as material physical quantities to constitute collapse equation. We continue this significant investigation to understand the dynamical behavior of considered cylindrical system under non-minimal coupled [Formula: see text] functional, i.e. [Formula: see text]. This gravitational function gives compatible findings only for [Formula: see text], also [Formula: see text] and [Formula: see text] considered in this astrophysical model as coupling entity. This model contains [Formula: see text] which is constant entity, having the values of order of the effective Ricci scalar [Formula: see text]. Furthermore, we impose some physical constraints to determine and maintain the stability criteria by establishing the expression of adiabatic index, i.e. [Formula: see text] for cylindrical anisotropic configuration, in Newtonian [Formula: see text] and post-Newtonian ([Formula: see text]) eras.


Author(s):  
Hassen M. Ouakad ◽  
Majid Al-Harthi ◽  
Issam B. Bahadur

This work investigates the use of impact-oscillators in nonlinear electro-magnetic cantilever based broad bandwidth frequency energy harvester. The electro-mechanical model includes the dynamical equations of the nonlinear impact-oscillators, the nonlinear frequency resonant cantilever beam equation of the harvester, and the Lorenz magnetic force resulting from the surrounding nonlinear magnetic field. The simulated results of the harvested power show a band of resonant frequencies of the vibrating cantilever beam extended beyond its fundamental natural frequency. Due to the strong nonlinearity of both the impact oscillators’ forces and the magnetic flux, the harvested power of the enhanced system shows wider bands in its respective frequency response. Moreover, the harvested power of the cantilever beam shows that considering two magnets in repulsion generates higher values mainly due to the strong nonlinear transient magnetic flux, resulting into few times more power as compared to the case of considering only one magnet in the system.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Theodoros Pailas ◽  
Nikolaos Dimakis ◽  
Petros A. Terzis ◽  
Theodosios Christodoulakis

AbstractThe system under study is the $$\Lambda $$ Λ -Kantowski–Sachs universe. Its canonical quantization is provided based on a recently developed method: the singular minisuperspace Lagrangian describing the system, is reduced to a regular (by inserting into the dynamical equations the lapse dictated by the quadratic constraint) possessing an explicit (though arbitrary) time dependence; thus a time-covariant Schrödinger equation arises. Additionally, an invariant (under transformations $$t=f({\tilde{t}})$$ t = f ( t ~ ) ) decay probability is defined and thus “observers” which correspond to different gauge choices obtain, by default, the same results. The time of decay for a Gaussian wave packet localized around the point $$a=0$$ a = 0 (where a the radial scale factor) is calculated to be of the order $$\sim 10^{-42}{-}10^{-41}~\text {s}$$ ∼ 10 - 42 - 10 - 41 s . The acquired value is near the end of the Planck era (when comparing to a FLRW universe), during which the quantum effects are most prominent. Some of the results are compared to those obtained by following the well known canonical quantization of cosmological systems, i.e. the solutions of the Wheeler–DeWitt equation.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
J.M. TenBarge ◽  
B. Ripperda ◽  
A. Chernoglazov ◽  
A. Bhattacharjee ◽  
J.F. Mahlmann ◽  
...  

Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.


2021 ◽  
Vol 2021 (12) ◽  
pp. 032
Author(s):  
Genly Leon ◽  
Juan Magaña ◽  
A. Hernández-Almada ◽  
Miguel A. García-Aspeitia ◽  
Tomás Verdugo ◽  
...  

Abstract In this work, we use an observational approach and dynamical system analysis to study the cosmological model recently proposed by Saridakis (2020), which is based on the modification of the entropy-area black hole relation proposed by Barrow (2020). The Friedmann equations governing the dynamics of the Universe under this entropy modification can be calculated through the gravity-thermodynamics conjecture. We investigate two models, one considering only a matter component and the other including matter and radiation, which have new terms compared to the standard model sourcing the late cosmic acceleration. A Bayesian analysis is performed in which using five cosmological observations (observational Hubble data, type Ia supernovae, HII galaxies, strong lensing systems, and baryon acoustic oscillations) to constrain the free parameters of both models. From a joint analysis, we obtain constraints that are consistent with the standard cosmological paradigm within 2σ confidence level. In addition, a complementary dynamical system analysis using local and global variables is developed which allows obtaining a qualitative description of the cosmology. As expected, we found that the dynamical equations have a de Sitter solution at late times.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiva P. Pudasaini ◽  
Michael Krautblatter

AbstractErosion can significantly increase the destructive power of a landslide by amplifying its volume, mobility and impact force. The threat posed by an erosive landslide is linked to its mobility. No mechanical condition has yet been presented for when, how and how much energy erosive landslides gain or lose. Here, we pioneer a mechanical model for the energy budget of erosive landslides that controls enhanced or reduced mobility. Inertia is related to an entrainment velocity, is a fundamentally new understanding. This ascertains the true inertia of erosive landslides, making a breakthrough in correctly determining the landslide mobility. Erosion velocity, which regulates the energy budget, determines the enhanced or reduced mobility. Newly developed energy generator offers the first-ever mechanical quantification of erosional energy and a precise description of mobility. This addresses the long-standing question of why many erosive landslides generate higher mobility, while others reduce mobility. We demonstrate that erosion and entrainment are different processes. Landslides gain energy and enhance mobility if the erosion velocity exceeds the entrainment velocity. Energy velocity delineates distinct excess energy regimes. Newly introduced mobility scaling and erosion number deliver the explicit measure of mobility. Presented dynamical equations correctly include erosion induced net momentum production.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012078
Author(s):  
Irina Dymnikova ◽  
Evgeny Galaktionov

Abstract We present a brief review of the basic properties of regular electrically charged black holes and electromagnetic solitons, predicted by analysis of regular solutions to dynamical equations of Nonlinear Electrodynamics minimally coupled to Gravity (NED-GR). The fundamental generic feature of regular NED-GR objects is the de Sitter vacuum interiors and the relation of their masses to spacetime symmetry breaking from the de Sitter group. Regular spinning NED-GR objects have interior de Sitter vacuum disk with the properties of a perfect conductor and ideal diamagnetic. The disk is confined by the ring with the superconducting current which provides the non-dissipative source of the electromagnetic fields and of the intrinsic magnetic momentum.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2007
Author(s):  
Taher S. Hassan ◽  
A. Othman Almatroud ◽  
Mohammed M. Al-Sawalha ◽  
Ismoil Odinaev

The aim of this paper is to deduce the asymptotic and Hille-type criteria of the dynamic equations of third order on time scales. Some of the presented results concern the sufficient condition for the oscillation of all solutions of third-order dynamical equations. Additionally, compared with the related contributions reported in the literature, the Hille-type oscillation criterion which is derived is superior for dynamic equations of third order. The symmetry plays a positive and influential role in determining the appropriate type of study for the qualitative behavior of solutions to dynamic equations. Some examples of Euler-type equations are included to demonstrate the finding.


Sign in / Sign up

Export Citation Format

Share Document