GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea

2014 ◽  
Vol 98 (18) ◽  
pp. 7935-7948 ◽  
Author(s):  
Li-Li Yao ◽  
Cheng-Heng Liao ◽  
Gang Huang ◽  
Ying Zhou ◽  
Sebastien Rigali ◽  
...  
2016 ◽  
Vol 113 (24) ◽  
pp. 6653-6658 ◽  
Author(s):  
Di You ◽  
Bin-Cheng Yin ◽  
Zhi-Hai Li ◽  
Ying Zhou ◽  
Wen-Bang Yu ◽  
...  

In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes.


2015 ◽  
Vol 112 (51) ◽  
pp. 15630-15635 ◽  
Author(s):  
Cheng-Heng Liao ◽  
Lili Yao ◽  
Ya Xu ◽  
Wei-Bing Liu ◽  
Ying Zhou ◽  
...  

The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.


1960 ◽  
Vol 19 (1) ◽  
pp. 44-53 ◽  
Author(s):  
G. A. McLaren ◽  
G. C. Anderson ◽  
J. A. Welch ◽  
C. D. Campbell ◽  
G. S. Smith
Keyword(s):  

Crop Science ◽  
1983 ◽  
Vol 23 (1) ◽  
pp. 20-22 ◽  
Author(s):  
James F. Henson ◽  
J. Giles Waines

Crop Science ◽  
1987 ◽  
Vol 27 (6) ◽  
pp. 1177-1184 ◽  
Author(s):  
R. B. Flagler ◽  
R. P. Patterson ◽  
A. S. Heagle ◽  
W. W. Heck

Sign in / Sign up

Export Citation Format

Share Document