scholarly journals Mixed-integer programming approaches for the time-constrained maximal covering routing problem

OR Spectrum ◽  
2021 ◽  
Author(s):  
Markus Sinnl

AbstractIn this paper, we study the recently introduced time-constrained maximal covering routing problem. In this problem, we are given a central depot, a set of facilities, and a set of customers. Each customer is associated with a subset of the facilities which can cover it. A feasible solution consists of k Hamiltonian cycles on subsets of the facilities and the central depot. Each cycle must contain the depot and must respect a given distance limit. The goal is to maximize the number of customers covered by facilities contained in the cycles. We develop two exact solution algorithms for the problem based on new mixed-integer programming models. One algorithm is based on a compact model, while the other model contains an exponential number of constraints, which are separated on-the-fly, i.e., we use branch-and-cut. We also describe preprocessing techniques, valid inequalities and primal heuristics for both models. We evaluate our solution approaches on the instances from literature and our algorithms are able to find the provably optimal solution for 267 out of 270 instances, including 123 instances, for which the optimal solution was not known before. Moreover, for most of the instances, our algorithms only take a few seconds, and thus are up to five magnitudes faster than previous approaches. Finally, we also discuss some issues with the instances from literature and present some new instances.

2013 ◽  
Vol 437 ◽  
pp. 748-751
Author(s):  
Chi Yang Tsai ◽  
Yi Chen Wang

This research considers the problem of scheduling jobs on unrelated parallel machines with inserted idle times to minimize the earliness and tardiness. The aims at investigating how particular objective value can be improved by allowing machine idle time and how quality solutions can be more effectively obtained. Two mixed-integer programming formulations combining with three dispatching rules are developed to solve such scheduling problems. They can easy provide the optimal solution to problem involving about nine jobs and four machines. From the results of experiments, it is found that: (1) the inserted idle times decreases objective values more effectively; (2) three dispatching rules are very competitive in terms of efficiency and quality of solutions.


1999 ◽  
Vol 121 (4) ◽  
pp. 701-708 ◽  
Author(s):  
Q. A. Sayeed ◽  
E. C. De Meter

Workpiece deformation during machining is a significant source of machined feature geometric error. This paper presents a linear, mixed integer programming model for determining the optimal locations of locator buttons, supports, and their opposing clamps for minimizing the affect of static workpiece deformation on machined feature geometric error. This model operates on discretized candidate regions as opposed to continuous candidate regions. In addition it utilizes a condensed FEA model of the workpiece in order to minimize model size and computation expense. This model has two advantages over existing nonlinear programming (NLP) formulations. The first is its ability to solve problems in which fixture elements can be placed over multiple regions. The second is that a global optimal solution to this model can be obtained using commercially available software.


Sign in / Sign up

Export Citation Format

Share Document