scholarly journals Effects of human land-use on the global carbon cycle during the last 6,000 years

2007 ◽  
Vol 17 (5) ◽  
pp. 605-615 ◽  
Author(s):  
Jörgen Olofsson ◽  
Thomas Hickler
2000 ◽  
Vol 10 (5) ◽  
pp. 1426-1441 ◽  
Author(s):  
Michael A. Cairns ◽  
Patricia K. Haggerty ◽  
Roman Alvarez ◽  
Ben H. J. De Jong ◽  
Ingrid Olmsted

2009 ◽  
Vol 6 (2) ◽  
pp. 3215-3235 ◽  
Author(s):  
S. Zhao ◽  
S. Liu ◽  
Z. Li ◽  
T. L. Sohl

Abstract. Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS), along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively), to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.


2009 ◽  
Vol 6 (8) ◽  
pp. 1647-1654 ◽  
Author(s):  
S. Q. Zhao ◽  
S. Liu ◽  
Z. Li ◽  
T. L. Sohl

Abstract. Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS), along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively), to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at the local to global scales.


1980 ◽  
Vol 4 (2) ◽  
pp. 189-206 ◽  
Author(s):  
Yip-Hoi Chan ◽  
Jerry S. Olson ◽  
William R. Emanuel

Sign in / Sign up

Export Citation Format

Share Document