carbon cycle
Recently Published Documents


TOTAL DOCUMENTS

3368
(FIVE YEARS 808)

H-INDEX

152
(FIVE YEARS 16)

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122795
Author(s):  
Guangming Zhang ◽  
Wei Wang ◽  
Zhenyu Chen ◽  
Ruilian Li ◽  
Yuguang Niu

2022 ◽  
pp. SP521-2021-149
Author(s):  
Xiangdong Zhao ◽  
Daran Zheng ◽  
He Wang ◽  
Yanan Fang ◽  
Naihua Xue ◽  
...  

AbstractThe Oceanic Anoxic Event (OAE) 1b is well documented in western Tethys, however, records in Eurasia are still lacking. Here, we carried out high-resolution organic carbon isotope (δ13Corg), total organic carbon (TOC) contents and mercury (Hg) concentrations analysis of the lacustrine sediments from the Xiagou and Zhonggou formations in the Hanxiagou section, Jiuquan Basin, northwestern China. The lacustrine δ13Corg curve presents three stages of negative excursions above the basalt layer dated at 112.4 ± 0.3 Ma in the lowermost Zhonggou Formation. The three negative δ13Corg excursions, well corresponded with the three subevents (Kilian, Paquier, and Leenhardt) of the OAE1b in Poggio le Guaine (central Italy), Vocontian Basin (SE France) and St Rosa Canyon (NE Mexico) sections, supporting the record of the terrestrial OAE 1b in the Jiuquan Basin. Five mercury enrichment (ME) intervals in Hg/TOC ratios were recognized, indicating that the pulsed volcanism from the southern Kerguelen Plateau likely triggered the OAE 1b. However, the decoupling between NIE shifts and mercury enrichments signifying other carbon reservoir (with no link to mercury) probably contributed to the global carbon cycle perturbation during the OAE 1b period. Our results provide direct evidence to link the OAE 1b and terrestrial ecosystem in the Eurasia.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Thomas E. Marler

Tree stem CO2 efflux (Es) can be substantial and the factors controlling ecosystem-level Es are required to fully understand the carbon cycle and construct models that predict atmospheric CO2 dynamics. The majority of Es studies used woody lignophyte trees as the model species. Applying these lignophyte data to represent all tree forms can be inaccurate. The Es of 318 arborescent species was quantified in a common garden setting and the results were sorted into four stem growth forms: cycads, palms, monocot trees that were not palms, and woody lignophyte trees. The woody trees were comprised of gymnosperm and eudicot species. The Es did not differ among the cycads, palms, and non-palm monocots. Lignophyte trees exhibited Es that was 40% greater than that of the other stem growth forms. The Es of lignophyte gymnosperm trees was similar to that of lignophyte eudicot trees. This extensive species survey indicates that the Es from lignophyte tree species do not align with the Es from other tree growth forms. Use of Es estimates from the literature can be inaccurate for understanding the carbon cycle in tropical forests, which contain numerous non-lignophyte tree species.


2022 ◽  
Vol 10 (1) ◽  
pp. 131
Author(s):  
Qiong Ren ◽  
Jihong Yuan ◽  
Jinping Wang ◽  
Xin Liu ◽  
Shilin Ma ◽  
...  

Although microorganisms play a key role in the carbon cycle of the Poyang Lake wetland, the relationship between soil microbial community structure and organic carbon characteristics is unknown. Herein, high-throughput sequencing technology was used to explore the effects of water level (low and high levels above the water table) and vegetation types (Persicaria hydropiper and Triarrhena lutarioriparia) on microbial community characteristics in the Poyang Lake wetland, and the relationships between soil microbial and organic carbon characteristics were revealed. The results showed that water level had a significant effect on organic carbon characteristics, and that soil total nitrogen, organic carbon, recombinant organic carbon, particle organic carbon, and microbial biomass carbon were higher at low levels above the water table. A positive correlation was noted between soil water content and organic carbon characteristics. Water level and vegetation type significantly affected soil bacterial and fungal diversity, with water level exerting a higher effect than vegetation type. The impacts of water level and vegetation type were higher on fungi than on bacteria. The bacterial diversity and evenness were significantly higher at high levels above the water table, whereas an opposite trend was noted among fungi. The bacterial and fungal richness in T. lutarioriparia community soil was higher than that in P. hydropiper community soil. Although both water level and vegetation type had significant effects on bacterial and fungal community structures, the water level had a higher impact than vegetation type. The bacterial and fungal community changes were the opposite at different water levels but remained the same in different vegetation soils. The organic carbon characteristics of wetland soil were negatively correlated with bacterial diversity but positively correlated with fungal diversity. Soil water content, soluble organic carbon, C/N, and microbial biomass carbon were the key soil factors affecting the wetland microbial community. Acidobacteria, Alphaproteobacteria, Verrucomicrobia, Gammaproteobacteria, and Eurotiomycetes were the key microbiota affecting the soil carbon cycle in the Poyang Lake wetland. Thus, water and carbon sources were the limiting factors for bacteria and fungi in wetlands with low soil water content (30%). Hence, the results provided a theoretical basis for understanding the microbial-driven mechanism of the wetland carbon cycle.


2022 ◽  
Author(s):  
Yann Quilcaille ◽  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher

Abstract. While Earth system models (ESMs) are process-based and can be run at high resolutions, they are only limited by computational costs. Reduced complexity models, also called simple climate models or compact models, provide a much cheaper alternative, although at a loss of spatial information. Their structure relies on the sciences of the Earth system, but with a calibration against the most complex models. Therefore it remains important to evaluate and validate reduced complexity models. Here, we diagnose such a model the newest version of OSCAR (v3.1) using observations and results from ESMs from the current Coupled Model Intercomparison Project 6. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic framework, reaching a total of 567,700,000 simulated years. A first highlight of this exercise that the ocean carbon cycle of the model may diverge under some parametrizations and for high-warming scenarios. The diverging runs caused by this unstability were discarded in the post-processing. Then, each physical parametrization is weighted based on its performance against a set of observations, providing us with constrained results. Overall, OSCAR v3.1 shows good agreement with observations, ESMs and emerging properties. It qualitively reproduces the responses of complex ESMs, for all aspects of the Earth system. We observe some quantitative differences with these models, most of them being due to the observational constraints. Some specific features of OSCAR also contribute to these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands CH4 and permafrost CH4 and CO2 emissions. The main points of improvements are a low sensitivity of the land carbon cycle to climate change, an unstability of the ocean carbon cycle, the seemingly too simple climate module, and the too strong climate feedback involving short-lived species. Beyond providing a key diagnosis of the OSCAR model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of CMIP6 simulations run consistently within a probabilistic framework.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yanan Zhang ◽  
Jinghong Wei ◽  
Ying Wang ◽  
Sang-Bing Tsai

Facing the new form and situation of the Huaihe Economic Zone, it is of great significance to analyze the sources of growth and the intrinsic mechanism of the green total factor productivity of its economic-ecological system, to grasp the spatial and temporal characteristics of green total factor productivity, and to study the influence of each factor on green total factor productivity to achieve sustainable economic development in the Huaihe Economic Zone. Based on the clarification of economic growth theory, green economy theory, carbon cycle theory, and green total factor productivity theory, this paper identifies and discusses the limitation that the existing research literature often ignores the endogenous role of carbon sinks when measuring green total factor productivity. Then, the green total factor productivity of Huaihe Economic Zone based on carbon cycle from 2004 to 2017 is measured using the superefficient nonradial SBM model. Combined with the GML productivity index, it is decomposed into technical progress and technical efficiency and analyzed in comparison with the green total factor productivity without considering ecological purification capacity (carbon sink) from the perspective of time and space. Finally, the spatial Durbin model is used to analyze the effects of seven variables, including the level of economic development, environmental regulation, R&D level, and openness to the outside world, on green total factor productivity in the Huaihe Economic Zone, and to analyze the direct and indirect effects of each variable on green total factor productivity. TFP based on expected output carbon sink and GDP overall outperforms TFP based on expected output GDP only, mainly because the growth of technical efficiency is underestimated when carbon sink is not considered. Technical efficiency and technological progress are equally important for the growth of TFP in an eco-economic perspective. It is of great practical significance for both the comprehensive understanding of the green total factor productivity level and the improvement path of the ecosystem and the coordinated and sustainable development of the Huaihe Economic Zone.


2022 ◽  
Author(s):  
Barbara Bayer ◽  
Kelsey McBeain ◽  
Craig A Carlson ◽  
Alyson E Santoro

Nitrifying microorganisms, including ammonia-oxidizing archaea, ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into biomass. The release of organic compounds by these microbes is less well known but may represent an as-yet unaccounted source of dissolved organic carbon (DOC) available to heterotrophic marine food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation yields and DOC release of ten phylogenetically diverse marine nitrifiers grown in multiple culture conditions. All investigated strains released DOC during growth, making up on average 5-15% of the fixed DIC. Neither substrate concentration nor temperature affected the proportion of fixed DIC released as DOC, but release rates varied between closely related species. Our results also indicate previous studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial decoupling of nitrite oxidation from CO2 fixation, and due to lower observed yields in artificial compared to natural seawater medium. The results of this study provide values for biogeochemical models of the global carbon cycle, and help to further constrain the implications of nitrification-fueled chemoautotrophy for marine food-web functioning and the biological sequestration of carbon in the ocean.


2022 ◽  
pp. 105537
Author(s):  
Jingong Cai ◽  
Jiazong Du ◽  
Qian Chao ◽  
Xiang Zeng ◽  
Hailun Wei

Sign in / Sign up

Export Citation Format

Share Document