Tropical forests and the global carbon cycle: the need for sustainable land-use patterns

Author(s):  
Sandra Brown
2011 ◽  
Vol 8 (6) ◽  
pp. 1615-1629 ◽  
Author(s):  
J. Mascaro ◽  
G. P. Asner ◽  
H. C. Muller-Landau ◽  
M. van Breugel ◽  
J. Hall ◽  
...  

Abstract. Despite the importance of tropical forests to the global carbon cycle, ecological controls over landscape-level variation in live aboveground carbon density (ACD) in tropical forests are poorly understood. Here, we conducted a spatially comprehensive analysis of ACD variation for a continental tropical forest – Barro Colorado Island, Panama (BCI) – and tested site factors that may control such variation. We mapped ACD over 1256 ha of BCI using airborne Light Detection and Ranging (LiDAR), which was well-correlated with ground-based measurements of ACD in Panamanian forests of various ages (r2 = 0.84, RMSE = 17 Mg C ha−1, P < 0.0001). We used multiple regression to examine controls over LiDAR-derived ACD, including slope angle, forest age, bedrock, and soil texture. Collectively, these variables explained 14 % of the variation in ACD at 30-m resolution, and explained 33 % at 100-m resolution. At all resolutions, slope (linked to underlying bedrock variation) was the strongest driving factor; standing carbon stocks were generally higher on steeper slopes. This result suggests that physiography may be more important in controlling ACD variation in Neotropical forests than currently thought. Although BCI has been largely undisturbed by humans for a century, past land-use over approximately half of the island still influences ACD variation, with younger forests (80–130 years old) averaging ~15 % less carbon storage than old-growth forests (>400 years old). If other regions of relatively old tropical secondary forests also store less carbon aboveground than primary forests, the effects on the global carbon cycle could be substantial and difficult to detect with traditional satellite monitoring.


2000 ◽  
Vol 10 (5) ◽  
pp. 1426-1441 ◽  
Author(s):  
Michael A. Cairns ◽  
Patricia K. Haggerty ◽  
Roman Alvarez ◽  
Ben H. J. De Jong ◽  
Ingrid Olmsted

Science ◽  
1988 ◽  
Vol 239 (4835) ◽  
pp. 42-47 ◽  
Author(s):  
R. P. DETWILER ◽  
C. A. S. HALL

2009 ◽  
Vol 6 (2) ◽  
pp. 3215-3235 ◽  
Author(s):  
S. Zhao ◽  
S. Liu ◽  
Z. Li ◽  
T. L. Sohl

Abstract. Land use change is critical in determining the distribution, magnitude and mechanisms of terrestrial carbon budgets at the local to global scales. To date, almost all regional to global carbon cycle studies are driven by a static land use map or land use change statistics with decadal time intervals. The biases in quantifying carbon exchange between the terrestrial ecosystems and the atmosphere caused by using such land use change information have not been investigated. Here, we used the General Ensemble biogeochemical Modeling System (GEMS), along with consistent and spatially explicit land use change scenarios with different intervals (1 yr, 5 yrs, 10 yrs and static, respectively), to evaluate the impacts of land use change data frequency on estimating regional carbon sequestration in the southeastern United States. Our results indicate that ignoring the detailed fast-changing dynamics of land use can lead to a significant overestimation of carbon uptake by the terrestrial ecosystem. Regional carbon sequestration increased from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land use change data frequency shifting from 1 year to 5 years, 10 years interval and static land use information, respectively. Carbon removal by forest harvesting and prolonged cumulative impacts of historical land use change on carbon cycle accounted for the differences in carbon sequestration between static and dynamic land use change scenarios. The results suggest that it is critical to incorporate the detailed dynamics of land use change into local to global carbon cycle studies. Otherwise, it is impossible to accurately quantify the geographic distributions, magnitudes, and mechanisms of terrestrial carbon sequestration at local to global scales.


Sign in / Sign up

Export Citation Format

Share Document