Storage Capacity
Recently Published Documents


TOTAL DOCUMENTS

4757
(FIVE YEARS 2088)

H-INDEX

110
(FIVE YEARS 35)

2022 ◽  
Vol 9 ◽  
Author(s):  
Ning Wei ◽  
Xiaochun Li ◽  
Zhunsheng Jiao ◽  
Philip H. Stauffer ◽  
Shengnan Liu ◽  
...  

Carbon dioxide (CO2) storage in deep saline aquifers is a vital option for CO2 mitigation at a large scale. Determining storage capacity is one of the crucial steps toward large-scale deployment of CO2 storage. Results of capacity assessments tend toward a consensus that sufficient resources are available in saline aquifers in many parts of the world. However, current CO2 capacity assessments involve significant inconsistencies and uncertainties caused by various technical assumptions, storage mechanisms considered, algorithms, and data types and resolutions. Furthermore, other constraint factors (such as techno-economic features, site suitability, risk, regulation, social-economic situation, and policies) significantly affect the storage capacity assessment results. Consequently, a consensus capacity classification system and assessment method should be capable of classifying the capacity type or even more related uncertainties. We present a hierarchical framework of CO2 capacity to define the capacity types based on the various factors, algorithms, and datasets. Finally, a review of onshore CO2 aquifer storage capacity assessments in China is presented as examples to illustrate the feasibility of the proposed hierarchical framework.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 566
Author(s):  
Anton Shchipanov ◽  
Lars Kollbotn ◽  
Mauro Encinas ◽  
Ingebret Fjelde ◽  
Roman Berenblyum

Storing CO2 in geological formations is an important component of reducing greenhouse gases emissions. The Carbon Capture and Storage (CCS) industry is now in its establishing phase, and if successful, massive storage volumes would be needed. It will hence be important to utilize each storage site to its maximum, without challenging the formation integrity. For different reasons, supply of CO2 to the injection sites may be periodical or unstable, often considered as a risk element reducing the overall efficiency and economics of CCS projects. In this paper we present outcomes of investigations focusing on a variety of positive aspects of periodic CO2 injection, including pressure management and storage capacity, also highlighting reservoir monitoring opportunities. A feasibility study of periodic injection into an infinite saline aquifer using a mechanistic reservoir model has indicated significant improvement in storage capacity compared to continuous injection. The reservoir pressure and CO2 plume behavior were further studied revealing a ‘CO2 expansion squeeze’ effect that governs the improved storage capacity observed in the feasibility study. Finally, the improved pressure measurement and storage capacity by periodic injection was confirmed by field-scale simulations based on a real geological set-up. The field-scale simulations have confirmed that ‘CO2 expansion squeeze’ governs the positive effect, which is also influenced by well location in the geological structure and aquifer size, while CO2 dissolution in water showed minor influence. Additional reservoir effects and risks not covered in this paper are then highlighted as a scope for further studies. The value of the periodic injection with intermittent CO2 supply is finally discussed in the context of deployment and integration of this technology in the establishing CCS industry.


2022 ◽  
Vol 51 (4) ◽  
pp. 674-689
Author(s):  
Elena Demchenko ◽  
Tatiana Savenkova ◽  
Inessa Mizinchikova

Introduction. The quality profile and nutritional values of cookies depend on the raw material. The research objective was to study the effect of oils and fats on the quality characteristics and storage capacity of cookies. Study objects and methods. The study involved such types of oils and fats as margarine, confectionery fat, milk fat substitute, palm oil, sunflower oil, and high oleic sunflower oil. It was based on standard methods of sensory, physicochemical, structural, and rheological analyses. Results and discussion. The experimental formulations relied on contemporary dilatory recommendations, consumer acceptability, and traditionality of sensory indicators. The mass fraction of fat was limited to ≤ 18%; added sugars – to ≤ 22%; salt – to ≤ 0.3%. For each type of oil and fat, as set of experiments was performed to define the optimal technological emulsion and dough parameters. Other aspects involved the patterns of moisture transfer, indicators of oxidative spoilage, fatty acid composition, sensory properties, physicochemical and microbiological indicators, storage capacity, etc. The samples with vegetable oils instead of fat had a lower content of saturated fatty acids, which fell from 8–9 to 2–3 g/100 g. However, the risk of oxidative spoilage increased significantly. On storage day 104, the content of linoleic acid in the samples with sunflower oil decreased from 62.0 to 60.4%, while the samples with high oleic sunflower oil maintained the same level of linoleic acid. The samples with confectionery fat and palm oil demonstrated the lowest rate of oxidative processes, while those with margarine and milk fat substitute had the best sensory profile after storage. Conclusion. The cookies with sunflower oil and high oleic sunflower oil appeared to have a shelf life of two months, while for those with milk fat substitute, margarine, palm oil, and confectionery fat it was six months. Further research should focus on various emulsifiers and antioxidants capable of forming bonds with proteins and starch fractions of flour, which could increase the resistance of liquid vegetable oils to oxidation.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 485
Author(s):  
Wenjiu Cai ◽  
Xin Huang ◽  
Hailong Lu

Studies revealed that gas hydrate cages, especially small cages, are incompletely filled with guest gas molecules, primarily associated with pressure and gas composition. The ratio of hydrate cages occupied by guest molecules, defined as cage occupancy, is a critical parameter to estimate the resource amount of a natural gas hydrate reservoir and evaluate the storage capacity of methane or hydrogen hydrate as an energy storage medium and carbon dioxide hydrate as a carbon sequestration matrix. As the result, methods have been developed to investigate the cage occupancy of gas hydrate. In this review, several instrument methods widely applied for gas hydrate analysis are introduced, including Raman, NMR, XRD, neutron diffraction, and the approaches to estimate cage occupancy are summarized.


Author(s):  
Segel Ginting

The application of the polder system for flood control in DKI Jakarta has become a must for coastal areas, especially with the construction of sea dikes along the coast of Jakarta as a solution to anticipate tidal flooding. One thing to consider when using a polder system in flood control is how much pump capacity and reservoir are needed. To answer this quetions, a hydrological analysis has been carried out with several method approaches, starting from determining the rainfall design in the form of a depth duration frequency curve in 1 hour to 48 hours, and then applied area reduction factor (ARF) to corrected rainfall design. Natural Resources Conservation Service (NRCS) method are uses to calculated runoff or effective rainfall and then with the unit hydrograph by time area method to produce a runoff hydrograph. Based on this approach, the Sentiong Polder plan has been carried out with the result that the required pump capacity for a 25-year return period is 32 m3/s and 50 m3/s for a 100-year return period with a storage capacity used of 1,507,500 m3. If you want to reduce the pump capacity, it is necessary to increase the storage capacity.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 259-268
Author(s):  
G. M. Sviridenko ◽  
M. B. Zakharova ◽  
N. V. Ivanova

The article presents the research results of studying the influence of various groups of microorganisms — coliform bacteria, lactic acid microorganisms, yeast, and spore bacteria — on the quality and storage capacity of cream used as a raw material for buttermaking. The objects of study were the following: cream as a raw material before and after pasteurization, as well as pasteurized cream seeded with testing cultures of various types of spoilage microorganisms. The samples were stored at temperature conditions of 30 ± 1 °C, 10 ± 1 °C, and 4 ± 2 °C. To evaluate the quality and storage capacity of cream used as a raw material, its microbiological and physicochemical indicators were determined by standardized methods: bacterial number, titratable acidity, indicators of oxidative spoilage of the fat phase. Organoleptic characteristics were evaluated in terms of taste, consistency and appearance. Research results have shown that the greatest microbiological risks during storage of cream used as a raw material are associated with lactococci, coliform bacteria and yeast. Microbiological risks caused by seeding of cream with thermophilic streptococcus, spore bacteria of the genus Bacillus and spore anaerobic microorganisms of the genus Clostridium are less significant, which is associated with the lack of development and metabolism of these groups of microorganisms at storage temperatures of 10 ± 1 °C and 4 ± 2 °C. At the same time, the reason for the rejection of cream contaminated with these testing cultures, at a storage temperature of 4 ± 2 °C, is primarily a decrease in organoleptic indicators, and at a temperature of 10 ± 1 °C — an excess in bacterial number.


Author(s):  
Arsalan Ghasemian ◽  
Ebrahim Abiri ◽  
Kourosh Hassanli ◽  
Abdolreza Darabi

Abstract By using CNFET technology in 3a 2 nm node using a proposed SQI gate, two split bit-lines QSRAM architectures have been suggested to address the issue of increasing demand for storage capacity in IoT/IoVT applications. Peripheral circuits such as a novel quaternary to binary decoder for QSRAM have been offered. Various simulations on temperature, supply voltage, and access frequency have been done to evaluate and ensure the performance of the proposed SQI gate, suggested cells, and quaternary to binary decoder. Moreover, 1000 Monte-Carlo analyses on the fabrication parameters have been done to classify read and write delay and standby power of proposed cells along with PDP of proposed quaternary to binary decoder. It is worth mentioning that the PDP of the proposed SQI gate, decoder, and average power consumption of suggested HF-QSRAM cell reached 0.92 aJ, 4.13 aJ, and 0.15 µW, respectively, which are approximately 80%, 91%, and 33% improvements in comparison with the best existing designs in the literature.


Sign in / Sign up

Export Citation Format

Share Document